8 research outputs found

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes

    Get PDF
    Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community

    Multidimensional Vibrational Coherence Spectroscopy

    No full text

    Bridging big data: procedures for combining non-equivalent cognitive measures from the ENIGMA Consortium

    No full text
    Investigators in the cognitive neurosciences have turned to Big Data to address persistent replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. While there is tremendous potential to advance science through open data sharing, these efforts unveil a host of new questions about how to integrate data arising from distinct sources and instruments. We focus on the most frequently assessed area of cognition - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated raw data from 53 studies from around the world which measured at least one of three distinct verbal learning tasks, totaling N = 10,505 healthy and brain-injured individuals. A mega analysis was conducted using empirical bayes harmonization to isolate and remove site effects, followed by linear models which adjusted for common covariates. After corrections, a continuous item response theory (IRT) model estimated each individual subject’s latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance by 37% while preserving covariate effects. The effects of age, sex, and education on scores were found to be highly consistent across memory tests. IRT methods for equating scores across AVLTs agreed with held-out data of dually-administered tests, and these tools are made available for free online. This work demonstrates that large-scale data sharing and harmonization initiatives can offer opportunities to address reproducibility and integration challenges across the behavioral sciences

    Wissensformen im Lernfeld Gesellschaft

    No full text
    corecore