67 research outputs found

    The Soil Fungi: A Web of Life That Protects Trees and Fight Climate Change

    Get PDF
    Ectomycorrhizal fungi are a type of fungi that develops a mutually beneficial relationship with plant roots. These fungi form ancient and extremely successful partnerships with forest trees worldwide. The trees and their associated fungi have developed a trading partnership: the fungi help the plants reach hard-to-get nutrients, and, in return, the fungi get constant and uninterrupted access to carbohydrates (such as sugars) from the plant. This largely invisible interaction affects the storage and cycling of carbon in soil and benefits plant health and nutrition. Ectomycorrhizal fungi are also important for breaking down dead plants and animals. These fungi contribute to soil biodiversity and can help us to protect our forests in the face of environmental stresses, such as climate change and excessive land use

    Interactive effects of composted green waste and earthworm activity on tree growth and reclaimed soil quality: a mesocosm experiment

    Get PDF
    On reclaimed landfill sites, the addition of organic matter such as composted green waste (CGW) to soil-forming materials can support tree survival and growth. CGW addition may also assist the establishment of sustainable earthworm populations, and in turn these organisms can promote further soil development through their burrowing and feeding activity. Despite such potentially mutual benefits, little research has been carried out into CGW and earthworm interactions with trees on reclaimed land. A twelve month, open field nursery experiment revealed the responses of the interactions between two tree species; Alnus cordata (Betulaceae) and Acer platanoides (Sapindaceae), CGW and the earthworms Aporrectodea longa (Lumbricidae) and Allolobophora chlorotica (Lumbricidae) in reclaimed soil. Controlled mesocosm conditions permitted a detailed investigation into the factors affecting tree growth and nutrient uptake, soil nutrient cycling and earthworm population dynamics. Results revealed that A. cordata growth was unaffected by CGW or earthworm addition. There was, however, a significant positive synergistic effect of earthworm activity and CGW addition on A. platanoides growth. CGW addition significantly increased levels of organic carbon and essential plant macro-nutrients in reclaimed soil while earthworm activity assisted decomposition of both leaf litter and CGW. Findings showed that CGW may serve as a suitable early source of organic matter to support earthworm population establishment on reclaimed sites. This experiment demonstrates that CGW improves reclaimed soil quality, thereafter supporting tree establishment and growth on reclaimed landfill

    Developing a systematic sampling method for earthworms in and around deadwood

    Get PDF
    Background: The ecological importance of deadwood is widely acknowledged, however popular forestry practices may reduce deadwood from a site, and most European forests now fall below recommended targets, putting deadwood-associated species at risk. There is increasing evidence that earthworm species which live in alternative habitats such as deadwood can be missed by traditional sampling methods, which can lead to false classifications regarding species distributions and conservation status and value. Resolving the current lack of a systematic and quantitative methodology for surveying earthworms in microhabitats such as deadwood may therefore lead to valuable insights into earthworm species ecologies in forest ecosystems. The main aim of this research was to develop and trial a systematic method for surveying deadwood-associated earthworms, with potential future application to other invertebrates. Sampling of earthworms within soil, deadwood and soil beneath deadwood was carried out across a chronosequence of unmanaged oak forest stands. The results were then used to investigate the influence of soil and deadwood environmental factors and woodland age on the earthworm populations of oak-dominated broadleaf woodlands. Results: Results from our surveys successfully show that in oak woodland habitats with deadwood, omitting deadwood microhabitats from earthworm sampling can lead to underestimates of total earthworm species richness, abundance and biomass. We also found a significantly greater proportion of juveniles within the earthworm communities of broadleaf deadwood, where temperature and moisture conditions were more favourable than surrounding open soil habitats. Conclusions: The systematic method presented should be considered as additional and complementary to traditional sampling protocols, to provide a realistic estimate of earthworm populations in woodland systems. Adopting this quantitative approach to surveying the biodiversity value of deadwood may enable forest management practices to more effectively balance wood production against ecological and conservation values. Opportunities for further development of the sampling methodology are proposed

    Looking for Earthworms in Deadwood

    Get PDF
    Fallen branches, logs, and tree stumps are a valuable habitat in forests, giving food and shelter to many organisms, including earthworms. Unfortunately, deadwood is often removed from forests because its value is not fully appreciated. We wanted to overcome this by developing a sampling method for earthworms living in deadwood in forests. By testing our new sampling method in oak forests, we found that including deadwood in earthworm surveys improves our knowledge of forest earthworm populations. We also found a greater number of young earthworms in deadwood, where conditions were warmer and moister than in the soil. By surveying deadwood for invertebrates, such as earthworms, we can better understand the important role that deadwood in forests plays in maintaining biodiversity

    Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism and may be associated with compositional changes in intestinal bacteria. In a previous report, we surveyed intestinal microbiota in ileal and cecal biopsy samples from children with autism and gastrointestinal dysfunction (AUT-GI) and children with only gastrointestinal dysfunction (Control-GI). Our results demonstrated the presence of members of the family Alcaligenaceae in some AUT-GI children, while no Control-GI children had Alcaligenaceae sequences. Here we demonstrate that increased levels of Alcaligenaceae in intestinal biopsy samples from AUT-GI children result from the presence of high levels of members of the genus Sutterella. We also report the first Sutterella-specific PCR assays for detecting, quantitating, and genotyping Sutterella species in biological and environmental samples. Sutterella 16S rRNA gene sequences were found in 12 of 23 AUT-GI children but in none of 9 Control-GI children. Phylogenetic analysis revealed a predominance of either Sutterella wadsworthensis or Sutterella stercoricanis in 11 of the individual Sutterella-positive AUT-GI patients; in one AUT-GI patient, Sutterella sequences were obtained that could not be given a species-level classification based on the 16S rRNA gene sequences of known Sutterella isolates. Western immunoblots revealed plasma IgG or IgM antibody reactivity to Sutterella wadsworthensis antigens in 11 AUT-GI patients, 8 of whom were also PCR positive, indicating the presence of an immune response to Sutterella in some children

    Investigating tree foliar preference by the earthworms Aporrectodea longa and Allolobophora chlorotica in reclaimed and loam soil

    Get PDF
    Afforestation can improve the delivery of ecosystem services from reclaimed landfill sites. Tree health is a key determinant of ecosystem service delivery, and is directly impacted by soil quality; which is driven by biological processes in the soil, reliant on leaf litter inputs to function. Different tree species have different litter quality, affecting the degree to which they support biological processes in soils and the development of abundant and diverse soil faunal communities. In recognition of their key role in improving soil structure and fertility - key attributes of soil quality, earthworms have often been the subject of research as a part of land reclamation, and these organisms have displayed preferences for specific types of leaf litter. This work utilised a choice chamber design to measure the foliar material palatability of two tree species used in land restoration (Alnus cordata and Acer platanoides) as a food source for two common European earthworm species (Aporrectodea longa and Allolobophora chlorotica), and the effect of a reclaimed soil quality on earthworm growth, survival and feeding preferences. The research revealed that both earthworm species initially preferred the foliar material of A. cordata over A. platanoides, with the leaves of the latter requiring higher degradation to become palatable to earthworms. The consumption of fresh leaves showed these are a suitable food source for earthworms in choice chamber experiments, which historically have instead relied on senescent leaf litter. Finally, high survival rates of both A. longa and A. chlorotica in the reclaimed soil treatment, in addition to consumption of leaf material of two tree species now widely used on reclaimed landfill sites, demonstrated that these earthworm species are suitable candidates for inoculation to reclaimed land

    Can Rationing Through Inconvenience Be Ethical?

    Get PDF
    In this article, we provide a comprehensive analysis and a normative assessment of rationing through inconvenience as a form of rationing. By “rationing through inconvenience” in the health sphere, we refer to a non-financial burden (the inconvenience) that is either intended to cause or has the effect of causing patients or clinicians to choose an option for health‐related consumption that is preferred by the health system for its fairness, efficiency, or other distributive desiderata beyond assisting the immediate patient. We argue that under certain conditions, rationing through inconvenience may turn out to serve as a legitimate and, compared to direct rationing, even a preferable tool for rationing; we propose a research agenda to identify more precisely when that might be the case and when, alternatively, rationing through inconvenience remains ethically undesirable. After defining and illustrating rationing through inconvenience, we turn to its moral advantages and disadvantages over other rationing methods.We take it as a starting assumption that rationing, understood as scarce‐resource prioritization, is inevitable and, in a society that has goals beyond optimizing health care for individual patients—such as improving societal health care, education, or overall welfare—prudent and fair

    Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism
    corecore