264 research outputs found

    The Short-term Consequences of Nuclear War for Civilians

    Get PDF
    Much of the debate over nuclear weapons policy continues to revolve around discussions of the usefulness of nuclear attacks on military targets. Much less attention, however, is devoted to either the number or the importance of the civilian casualties that such attacks would cause. The short-term civilian casualties that would result from the use of nuclear weapons at three different levels of limited nuclear war are considered. These levels range from the employment of neutron bombs during an otherwise conventional battle in the Germanies to a nuclear attack against the strategic forces of the U.S. In addition, the consequences of all-out attacks by the superpowers on each other\u27s cities are briefly discussed. It is found that nuclear planners and strategists have almost always grossly underestimated the human costs of the use of nuclear weapons

    The Hazard from Plutonium Dispersal by Nuclear-warhead Accidents

    Get PDF
    Nuclear weapons are carefully designed to have an extremely low probability of exploding accidentally with an appreciable yield—even if they are involved in a high-speed crash, struck by a bullet or consumed in a fire. The principal concern when nuclear warheads are involved in such accidents is the possible dispersal of plutonium into the environment. In particular, an explosion could disperse a significant fraction of the plutonium in a warhead as particles of respirable size

    DU Not a High Priority for Antinuclear Movement

    Get PDF
    Two years ago, members of anti-nuclear weapons groups began to ask our views about the alarm raised by the International Action Center in its book, Metal of Dishonor, about the use of depleted uranium (DU) penetrators in anti-armor munitions. We were asked whether the hazard was so great that activists should give priority to banning DU. We read Metal of Dishonor and found that, despite the contributions of physicists and radiation-effects analysts, it contained no quantitative risk estimate. We therefore decided to provide the best one we could, using information available in the literature about the health effects of uranium and ionizing radiation. We concluded that, except for soldiers in vehicles when they are struck, or individuals who crawl around inside such vehicles without adequate respiratory protection for extended periods of time later on, the health effects of DU are likely to be very small. The radiation effects would be well below those of natural background radiation and the chemical effects would be well below the thresholds for known toxic effects. Contaminated armored vehicles and pieces of depleted uranium, however, are potential hazards and should be cleaned up or buried—something which was not done in most cases after Desert Storm and is only being done now in Kosovo

    Physical Constraints and Functional Characteristics of Transcription Factor-DNA Interaction

    Get PDF
    We study theoretical ``design principles'' for transcription factor-DNA interaction in bacteria, focusing particularly on the statistical interaction of the transcription factors (TF's) with the genomic background (i.e., the genome without the target sites). We introduce and motivate the concept of `programmability', i.e. the ability to set the threshold concentration for TF binding over a wide range merely by mutating the binding sequence of a target site. This functional demand, together with physical constraints arising from the thermodynamics and kinetics of TF-DNA interaction, leads us to a narrow range of ``optimal'' interaction parameters. We find that this parameter set agrees well with experimental data for the interaction parameters of a few exemplary prokaryotic TF's. This indicates that TF-DNA interaction is indeed programmable. We suggest further experiments to test whether this is a general feature for a large class of TF's.Comment: 9 pages, 4 figures; revised version as published in PNA

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0

    The rise and fall of the ancient northern pike master sex-determining gene

    Get PDF
    The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions

    Global Models of Runaway Accretion in White Dwarf Debris Disks

    Full text link
    A growing sample of white dwarfs (WDs) with metal-enriched atmospheres are accompanied by excess infrared emission, indicating that they are encircled by a compact dusty disk of solid debris. Such `WD debris disks' are thought to originate from the tidal disruption of asteroids or other minor bodies, but the precise mechanism(s) responsible for transporting matter to the WD surface remains unclear, especially in those systems with the highest inferred metal accretion rates dM_Z/dt ~ 1e8-1e10 g/s. Here we present global time-dependent calculations of the coupled evolution of the gaseous and solid components of WD debris disks. Solids transported inwards (initially due to PR drag) sublimate at tens of WD radii, producing a source of gas that accretes onto the WD surface and viscously spreads outwards in radius, where it overlaps with the solid disk. If the aerodynamic coupling between the solids and gaseous disks is sufficiently strong (and/or the gas viscosity sufficiently weak), then gas builds up near the sublimation radius faster than it can viscously spread away. Since the rate of drag-induced solid accretion increases with gas density, this results in a runaway accretion process, during which the WD accretion rate reaches values orders of magnitude higher than can be achieved by PR drag alone. We explore the evolution of WD debris disks across a wide range of physical conditions and calculate the predicted distribution of observed accretion rates dM_Z/dt, finding reasonable agreement with the current sample. Although the conditions necessary for runaway accretion are at best marginally satisfied given the minimal level of aerodynamic drag between circular gaseous and solid disks, the presence of other stronger forms of solid-gas coupling---such as would result if the gaseous disk is only mildly eccentric---substantially increase the likelihood of runaway accretion.Comment: 23 pages, 20 figures, submitted to MNRA
    corecore