9 research outputs found

    Genetic diversity and population structure of Peronosclerospora sorghi isolates of Sorghum in Uganda

    Full text link
    Sorghum is the third most important staple cereal crop in Uganda after maize and millet. Downy mildew disease is one of the most devastating fungal diseases which limits the production and productivity of the crop. The disease is caused by an obligate fungus, Peronosclerospora sorghi (Weston & Uppal) with varying symptoms. Information on the genetic diversity and population structure of P.sorghi in sorghum is imperative for the screening and selection for resistant genotypes and further monitoring possible mutant(s) of the pathogen. Isolates of P. sorghi infecting sorghum are difficult to discriminate when morphological descriptors are used. The use of molecular markers is efficient, and reliably precised for characterizing P. sorghi isolates. This study was undertaken to assess the level of genetic diversity and population structure that exist in P. sorghi isolates in Uganda. A total of 195 P. sorghi isolates, sampled from 13 different geographic populations from 10 different regions (agro-ecological zones) was used. Eleven (11) molecular markers, comprising of four Random amplified microsatellite (RAM) and seven (7) Inter-Simple Sequence Repeat (ISSR) markers were used in this study. The analysis of molecular variation (AMOVA) based on 11 microsatellite markers showed significant (P < 0.001) intra-population (88.9 %, PhiPT = 0.111) and inter-population (8.4 %, PhiPR = 0.083) genetic variation, while the genetic variation among regions (2.7 %, PhiRT = 0.022) was not significant. The highest genetic similarity value (0.987 = 98.7 %) was recorded between Pader and Lira populations and the lowest genetic similarity (0.913 = 91.3 %) was observed between Namutumba and Arua populations. The mean Nei's genetic diversity index (H) and Shannon Information Index (I) were 0.308 and 0.471 respectively. Seven distinct cluster groups were formed from the 195 P. sorghi isolates based on their genetic similarity. Mantel test revealed no association between genetic differentiation and geographical distance (R2 = 0.0026, p = 0.02) within the 13 geographic populations

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Update 1 of: Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions

    No full text

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p

    Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study (Intensive Care Medicine, (2021), 47, 2, (160-169), 10.1007/s00134-020-06234-9)

    No full text
    The original version of this article unfortunately contained a mistake. The members of the ESICM Trials Group Collaborators were not shown in the article but only in the ESM. The full list of collaborators is shown below. The original article has been corrected
    corecore