82 research outputs found

    Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study

    Get PDF
    Background Although growth differentiation factor 15 (GDF15) is known to increase with disease and is associated with low physical performance, the role of GDF15 in normal ageing is still not fully understood. Specifically, the influ ence of circulating GDF15 on impairments in maximal muscle power (a major contributor to functional limitations) and the underlying components has not been investigated. Methods Data from 1305 healthy women and men aged 20 to 93 years from The Copenhagen Sarcopenia Study were analysed. Circulating levels of GDF15 and markers of inflammation (tumor necrosis factor-alpha, interleukin-6, and high-sensitivity C-reactive protein) were measured by ELISA (R&D Systems) and multiplex bead-based immunoassays (Bio-Rad). Relative (normalized to body mass), allometric (normalized to height squared), and specific (normalized to leg muscle mass) muscle power were assessed by the Nottingham power rig [leg extension power (LEP)] and the 30 s sit-to-stand (STS) muscle power test. Total body fat, visceral fat, and leg lean mass were assessed by dual energy X-ray absorptiometry. Leg skeletal muscle index was measured as leg lean mass normalized to body height squared. Results Systemic levels of GDF15 increased progressively as a function of age in women (1.1 ± 0.4 pg·mL 1 ·year 1 ) and men (3.3 ± 0.6 pg·mL 1 ·year 1 ) (both P < 0.05). Notably, GDF15 increased at a faster rate from the age of 65 years in women (11.5 ± 1.2 pg·mL 1 ·year 1 , P < 0.05) and 70 years in men (19.3 ± 2.3 pg·mL 1 ·year 1 , P < 0.05), resulting in higher GDF15 levels in men compared with women above the age of 65 years (P < 0.05). Independently of age and circulatory markers of inflammation, GDF15 was negatively correlated to relative STS power (P < 0.05) but not LEP, in both women and men. These findings were mainly explained by negative associations of GDF15 with specific STS power in women and men (both P < 0.05). Conclusions A J-shaped relationship between age and systemic GDF15 was observed, with men at older age showing steeper increases and elevated GDF15 levels compared with women. Importantly, circulating GDF15 was indepen dently and negatively associated with relative STS power, supporting the potential role of GDF15 as a sensitive biomarker of frailty in older people

    Asparaginase-Associated Pancreatitis in Acute Lymphoblastic Leukemia : Results From the NOPHO ALL2008 Treatment of Patients 1-45 Years of Age

    Get PDF
    PURPOSE Asparaginase-associated pancreatitis (AAP) is common in patients with acute lymphoblastic leukemia (ALL), but risk differences across age groups both in relation to first-time AAP and after asparaginase re-exposure have not been explored. PATIENTS AND METHODS We prospectively registered AAP (n = 168) during treatment of 2,448 consecutive ALL patients aged 1.0-45.9 years diagnosed from July 2008 to October 2018 and treated according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO) ALL2008 protocol. RESULTS Compared with patients aged 1.0-9.9 years, adjusted AAP hazard ratios (HRa) were associated with higher age with almost identical HRa (1.6; 95% CI, 1.1 to 2.3; P = .02) for adolescents (10.0-17.9 years) and adults (18.0-45.9 years). The day 280 cumulative incidences of AAP were 7.0% for children (1.0-9.9 years: 95% CI, 5.4 to 8.6), 10.1% for adolescents (10.0 to 17.9 years: 95% CI, 7.0 to 13.3), and 11.0% for adults (18.0-45.9 years: 95% CI, 7.1 to 14.9; P = .03). Adolescents had increased odds of both acute (odds ratio [OR], 5.2; 95% CI, 2.1 to 13.2; P = .0005) and persisting complications (OR, 6.7; 95% CI, 2.4 to 18.4; P = .0002) compared with children (1.0-9.9 years), whereas adults had increased odds of only persisting complications (OR, 4.1; 95% CI, 1.4 to 11.8; P = .01). Fifteen of 34 asparaginase-rechallenged patients developed a second AAP. Asparaginase was truncated in 17/21 patients with AAP who subsequently developed leukemic relapse, but neither AAP nor the asparaginase truncation was associated with increased risk of relapse. CONCLUSION Older children and adults had similar AAP risk, whereas morbidity was most pronounced among adolescents. Asparaginase re-exposure should be considered only for patients with an anticipated high risk of leukemic relapse, because multiple studies strongly indicate that reduction of asparaginase treatment intensity increases the risk of relapse. (C) 2019 by American Society of Clinical OncologyPeer reviewe
    corecore