1,261 research outputs found

    Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results

    Full text link
    Earlier measurements of the masses and radii of the detached eclipsing binary V20 in the open cluster NGC 6791 were accurate enough to demonstrate that there are significant differences between current stellar models. Here we improve on those results and add measurements of two additional detached eclipsing binaries, the cluster members V18 and V80. The enlarged sample sets much tighter constraints on the properties of stellar models than has hitherto been possible, thereby improving both the accuracy and precision of the cluster age. We employed (i) high-resolution UVES spectroscopy of V18, V20 and V80 to determine their spectroscopic effective temperatures, [Fe/H] values, and spectroscopic orbital elements, and (ii) time-series photometry from the Nordic Optical Telescope to obtain the photometric elements. The masses and radii of the V18 and V20 components are found to high accuracy, with errors on the masses in the range 0.27-0.36% and errors on the radii in the range 0.61-0.92%. V80 is found to be magnetically active, and more observations are needed to determine its parameters accurately. The metallicity of NGC 6791 is measured from disentangled spectra of the binaries and a few single stars to be [Fe/H]= +0.29 \pm 0.03 (random) \pm 0.07 (systematic). The cluster reddening and apparent distance modulus are found to be E(B - V) = 0.160 \pm 0.025 and (m - M)V = 13.51 \pm 0.06 . A first model comparison shows that we can constrain the helium content of the NGC 6791 stars, and thus reach a more accurate age than previously possible. It may be possible to constrain additional parameters, in particular the C, N, and O abundances. This will be investigated in paper II.Comment: Accepted for publication in A&

    In search for classification and selection of spare parts suitable for additive manufacturing: a literature review

    Get PDF
    This paper reviews the literature on additive manufacturing (AM) technologies and equipment, and spare parts classification criteria to propose a systematic process for selecting spare parts which are suitable for AM. This systematic process identifies criteria that can be used to select spare parts that are suitable for AM. The review found that there is limited research that addresses identifying processes for spare parts selection for AM, even though companies have identified this to be a key challenge in adopting AM. Seven areas for future research are identified relating to the methodology of spare parts selection for AM, processes for cross-functional integration in selecting spare parts for AM, broadening the spare parts portfolio that is suitable for AM (by considering usage of AM in conjunction with conventional technologies), and potential impact of AM on product modularity and integrality

    KIC 8410637: a 408-day period eclipsing binary containing a pulsating red giant

    Get PDF
    Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement of masses and radii of ther component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age of the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. KIC 8410637 consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius and age. We analyse high-resolution spectra from three different spectrographs. We also calculate a fit to the Kepler light curve and use ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. We measured the masses and radii of the stars in the dEB, and the classical parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the most up-to-date version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations.Comment: Accepted 20.6.2013 for publication in Astronomy and Astrophysic

    Symmetry-mode analysis for local structure investigations using pair distribution function data

    Full text link
    Symmetry-adapted distortion modes provide a natural way to describe distorted structures derived from higher-symmetry parent phases. Structural refinements using symmetry-mode amplitudes as fit variables have been used for at least 10 years in Rietveld refinements of the average crystal structure from diffraction data; more recently, this approach has also been used for investigations of the local structure using real-space pair distribution function (PDF) data. Here, we further demonstrate the value of performing symmetry-mode fits to PDF data through the successful application of this method to two topical materials: TiSe2_2, where we detect the subtle but long-range structural distortion driven by the formation of a charge density wave, and MnTe, where we characterize a large but highly localized structural distortion in terms of symmetry-lowering displacements of the Te atoms. The analysis is performed using fully open-source code within the DiffPy framework using two packages we developed for this work: isopydistort, which provides a scriptable interface to the ISODISTORT web application for group theoretical calculations, and isopytools, which converts the ISODISTORT output into a DiffPy-compatible format for subsequent fitting and analysis. These developments expand the potential impact of symmetry-adapted PDF analysis by enabling high throughput analysis and removing the need for any commercial software

    The mass and age of the first SONG target: the red giant 46 LMi

    Get PDF
    Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for red-giant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. Aims. We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. Methods. A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Results. Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 ± 0.04 M⊙, R = 7.95 ± 0.11 R⊙ age t = 8.2 ± 1.9 Gy, and log g = 2.674 ± 0.013. Conclusions. The exciting possibilities for ground-based asteroseismology of solar-like oscillations with a fully robotic network have been illustrated with the results obtained from just a single site of the SONG network. The window function is still a severe problem which will be solved when there are more nodes in the network

    Efficient light coupling into a photonic crystal waveguide with flatband slow mode

    Full text link
    We design an efficient coupler to transmit light from a strip waveguide into the flatband slow mode of a photonic crystal waveguide with ring-shaped holes. The coupler is a section of a photonic crystal waveguide with a higher group velocity, obtained by different ring dimensions. We demonstrate coupling efficiency in excess of 95% over the 8 nm wavelength range where the photonic crystal waveguide exhibits a quasi constant group velocity vg = c/37. An analysis based on the small Fabry-P\'erot resonances in the simulated transmission spectra is introduced and used for studying the effect of the coupler length and for evaluating the coupling efficiency in different parts of the coupler. The mode conversion efficiency within the coupler is more than 99.7% over the wavelength range of interest. The parasitic reflectance in the coupler, which depends on the propagation constant mismatch between the slow mode and the coupler mode, is lower than 0.6% within this wavelength range.Comment: 11 pages, 7 figures, submitted to Photonics and Nanostructures - Fundamentals and Application

    Long Lived Fourth Generation and the Higgs

    Full text link
    A chiral fourth generation is a simple and well motivated extension of the standard model, and has important consequences for Higgs phenomenology. Here we consider a scenario where the fourth generation neutrinos are long lived and have both a Dirac and Majorana mass term. Such neutrinos can be as light as 40 GeV and can be the dominant decay mode of the Higgs boson for Higgs masses below the W-boson threshold. We study the effect of the Majorana mass term on the Higgs branching fractions and reevaluate the Tevatron constraints on the Higgs mass. We discuss the prospects for the LHC to detect the semi-invisible Higgs decays into fourth generation neutrino pairs. Under the assumption that the lightest fourth generation neutrino is stable, it's thermal relic density can be up to 20% of the observed dark matter density in the universe. This is in agreement with current constraints on the spin dependent neutrino-neutron cross section, but can be probed by the next generation of dark matter direct detection experiments.Comment: v1: 19 pages, 5 figures; v2: References added; v3: version to appear in JHE

    On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy

    Get PDF
    We evaluate the application of 57Fe Mössbauer spectroscopy to the determination of the composition of magnetite (Fe3O4)/maghemite (?-Fe2O3) mixtures and the stoichiometry of magnetite-maghemite solid solutions. In particular, we consider a recently proposed model-independent method which does not rely on a priori assumptions regarding the nature of the sample, other than that it is free of other Fe-containing phases. In it a single parameter, ?RT-the 'centre of gravity', or area weighted mean isomer shift at room temperature, T = 295 ± 5 K - is extracted by curve-fitting a sample's Mössbauer spectrum, and is correlated to the sample's composition or stoichiometry. We present data on high-purity magnetite and maghemite powders, and mixtures thereof, as well as comparison literature data from nanoparticulate mixtures and solid solutions, to show that a linear correlation exists between ?RT and the numerical proportion of Fe atoms in the magnetite environment: ? = Femagnetite/Fetotal = (?RT - ?o)/m, where ?o= 0.3206 ± 0.0022 mm s-1 and m = 0.2135 ± 0.0076 mm s-1. We also present equations to relate ? to the weight percentage w of magnetite in mixed phases, and the magnetite stoichiometry x = Fe2+/Fe3+ in solid solutions. The analytical method is generally applicable, but is most accurate when the absorption profiles are sharp; in some samples this may require spectra to be recorded at reduced temperatures. We consider such cases and provide equations to relate ?(T) to the corresponding ? value.This work was supported by the European Union Seventh Framework Programme through the NanoMag project ‘Nanometrology standardisation methods for magnetic nanoparticles’, under grant agreement no. 60444
    corecore