A chiral fourth generation is a simple and well motivated extension of the
standard model, and has important consequences for Higgs phenomenology. Here we
consider a scenario where the fourth generation neutrinos are long lived and
have both a Dirac and Majorana mass term. Such neutrinos can be as light as 40
GeV and can be the dominant decay mode of the Higgs boson for Higgs masses
below the W-boson threshold. We study the effect of the Majorana mass term on
the Higgs branching fractions and reevaluate the Tevatron constraints on the
Higgs mass. We discuss the prospects for the LHC to detect the semi-invisible
Higgs decays into fourth generation neutrino pairs. Under the assumption that
the lightest fourth generation neutrino is stable, it's thermal relic density
can be up to 20% of the observed dark matter density in the universe. This is
in agreement with current constraints on the spin dependent neutrino-neutron
cross section, but can be probed by the next generation of dark matter direct
detection experiments.Comment: v1: 19 pages, 5 figures; v2: References added; v3: version to appear
in JHE