79 research outputs found

    Fast Stochastic Cooling of Heavy Ions at the ESR Storage Ring

    Get PDF
    Since the completion of the installation of pick-up and kicker tanks in the ESR, stochastic cooling in all phase space dimensions has been demonstrated with rather short cooling times. New RF components were added. The system is now ready for experiments with secondary beams. The momentum sensitivity of the pick-up electrodes was measured. The ability of the Palmer cooling system to cool beams with a maximum momentum spread of ± 0.7 % was demonstrated. After injecting an uncooled primary argon beam from the SIS synchrotron, e-folding cooling times of 0.86 s in the longitudinal phase plane and 1.6 s in the horizontal plane were measured with 5×106 injected particles. These values are close to theoretical expectations. In a first experiment with uranium, the shortest cooling times have been below 0.5 s in both the longitudinal and vertical phase planes. The system cools the complete injected beam without beam loss. An experiment with beam accumulation following stochastic precooling was performed successfully. The resulting equilibrium phase space densities are high enough to be followed by fast electron cooling of the stack

    Stochastic Cooling at the ESR

    Get PDF
    Stochastic precooling at the ESR storage ring of GSI will be used mainly for experiments with stored radioactive fragment beams. They arrive from the fragment separator with momentum spreads and emittances for which electron cooling is too slow. The installation of components at the ESR is now complete and first commissioning experiments have been performed. Both longitudinal and transverse stochastic cooling have been demonstrated. The paper gives a short account of the system architecture, and of the response of quarter-wave plates and superelectrodes at intermediate energies. The preparation of fragment beams suitable for subsequent electron cooling is discussed for the case that a mixture of different ion species is present in the cooler ring. Results of commissioning and future prospects are presented

    First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    Get PDF
    A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B\u3c1-tagging at the high-resolution central focal plane of the FRS. In the experiment with B\u3c1-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2 c510-4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N=82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from \u3b3-ray spectroscopy and confirms modern shell-model calculations

    Precision of the PET activity range during irradiation with <sup>10</sup>C, <sup>11</sup>C, and <sup>12</sup>C beams

    Get PDF
    Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable 12C ions, the positron emitters 10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam. Approach. An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner. Main results. High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes 11C and 10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107 ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for 10C, 11C and 12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from 11C to 10C than when going from 12C to 11C. The much better precision for 10C is due to its much shorter half-life, which, contrary to the case of 11C, also enables to include the in-spill data in the image formation. Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.</p

    Precision of the PET activity range during irradiation with ¹⁰C, ¹¹C, and ¹²C beams

    Get PDF
    Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable ¹²C ions, the positron emitters ¹⁰,¹¹C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam. Approach. An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner. Main results. High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes ¹¹C and ¹⁰C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 10⁷ ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for ¹⁰C, ¹¹C and ¹²C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from ¹¹C to ¹⁰C than when going from ¹²C to ¹¹C. The much better precision for ¹⁰C is due to its much shorter half-life, which, contrary to the case of ¹¹C, also enables to include the in-spill data in the image formation. Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Application of polymer impression masses for the obtaining of dental working models for the stereolithographic 3D printing

    No full text
    Purpose: The aim of the work is to execute measurements of digital dental models taken by scanning prosthetic impressions using the engineering CAD software and finding dimensional differences and scale factor for precise reproduction of patient tooth dimensions. Design/methodology/approach: Tests were carried out involving the execution of 3 series of impressions for selected impression materials, which were then scanned using two types of prosthetic scanners. Gypsum models based on mentioned impressions were scanned and dimensionally compared with impression-based digital models. Benchmark impressions were also performed in order to verify the obtained results and determine the correction factor for dimensions. The dimensional differences between impression groups were calculated by using Engineering CAD software. Findings: It was found, that compared to the base model, the digital model has a smaller volume than the object being mapped, the digital models based directly on the impression should be 0.09 - 0.12% rescaled to match the dimensions of the base model. Research limitations/implications: It is necessary to perform a practical verification of the results achieved and apply the determined coefficient in practice by creating working models using precise devices such as a 3D SLA printer and verify their results with intraoral scanner based models. Practical implications: This test will allow making precise working models using a 3D printer, allowing finally to perform, for example, implant-based bridges directly from the level of implants, using the masses described in the study. Originality/value: The comparative studies of polyvinyl siloxane and alignate impression materials were carried out in order to measure dimensional differences between working models made directly from the impression and gypsum models and compared with pattern, which allowed to determine the expansion coefficient, which will allow to work in 3D printing technology with close representation of real situation in the patient's oral cavity, which is particularly important when performing full arch bridges and extensive work on implants, including direct implants. The work has practical applications for both dental engineers and dentists performing advanced prosthetic work
    corecore