14,710 research outputs found
Parallel-in-Time Multi-Level Integration of the Shallow-Water Equations on the Rotating Sphere
The modeling of atmospheric processes in the context of weather and climate
simulations is an important and computationally expensive challenge. The
temporal integration of the underlying PDEs requires a very large number of
time steps, even when the terms accounting for the propagation of fast
atmospheric waves are treated implicitly. Therefore, the use of
parallel-in-time integration schemes to reduce the time-to-solution is of
increasing interest, particularly in the numerical weather forecasting field.
We present a multi-level parallel-in-time integration method combining the
Parallel Full Approximation Scheme in Space and Time (PFASST) with a spatial
discretization based on Spherical Harmonics (SH). The iterative algorithm
computes multiple time steps concurrently by interweaving parallel high-order
fine corrections and serial corrections performed on a coarsened problem. To do
that, we design a methodology relying on the spectral basis of the SH to
coarsen and interpolate the problem in space. The methods are evaluated on the
shallow-water equations on the sphere using a set of tests commonly used in the
atmospheric flow community. We assess the convergence of PFASST-SH upon
refinement in time. We also investigate the impact of the coarsening strategy
on the accuracy of the scheme, and specifically on its ability to capture the
high-frequency modes accumulating in the solution. Finally, we study the
computational cost of PFASST-SH to demonstrate that our scheme resolves the
main features of the solution multiple times faster than the serial schemes
Economic perspectives for Central America after CAFTA; a GTAP-based analysis
Using a GTAP CGE application, we assess the main economic results of CAFTA for Central America (CA). Currently, Central America enjoys preferential access to the US market through the Caribbean Basin Initiative (CBI). CAFTA will consolidate and augment these concessions. Meanwhile, the agreement requires widespread opening of CA markets to US imports over time. The implementation of the ATC protocol in 2005 implies increased Chinese competition for the region in the textile and apparel sectors. CAFTA will balance for this new source of competition by allowing better access for CA textiles and apparel products, while creating large opportunities for labour market improvements and FDI inflows to Central America. If these opportunities are exploited, the region has much to gain from CAFTA. However, we also find a strong sectoral readjustment from agricultural sectors to maquila-based industries, which could create important adjustment strains.
Two-fluid magnetic island dynamics in slab geometry: II - Islands interacting with resistive walls or static external resonant magnetic perturbations
The dynamics of a propagating magnetic island interacting with a resistive
wall or a static external magnetic perturbation is investigated using
two-fluid, drift-MHD theory in slab geometry. In both cases, the island
equation of motion is found to take exactly the same form as that predicted by
single-fluid MHD theory. Three separate ion polarization terms are found in the
Rutherford island width evolution equation. The first is the drift-MHD
polarization term for an isolated island, and is completely unaffected by
interaction with a wall or magnetic perturbation. Next, there is the
polarization term due to interaction with a wall or magnetic perturbation which
is predicted by single-fluid MHD theory. Finally, there is a hybrid of the
other two polarization terms. The sign of this term depends on many factors.
However, under normal conditions, it is stabilizing if the unperturbed island
propagates in the ion diamagnetic direction (in the lab. frame), and
destabilizing if it propagates in the electron diamagnetic direction
Three-axis attitude determination via Kalman filtering of magnetometer data
A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system
Distributed computer system enhances productivity for SRB joint optimization
Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system
Development of polymeric hollow fiber membranes containing catalytic metal nanoparticules.
Metal nanoparticles (MNPs) have unique physico-chemical properties advantageous for catalytic applications which differ from bulk material. However, the main drawback of MNPs is their insufficient stability due to a high trend for aggregation. To cope with this inconvenience, the stabilization of MNPs in polymeric matrices has been tested. This procedure is a promising strategy to maintain catalytic properties. The aim of this work is the synthesis of polymer-stabilized MNPs inside functionalized polymeric membranes in order to build catalytic membrane reactors. First, the polymeric support must have functional groups capable to retain nanoparticle precursors (i.e. sulfonic), then, nanoparticles can grow inside the polymeric matrix by chemical reduction of metal ions. Two different strategies have been used in this work. Firstly, polyethersulfone microfiltration hollow fibers have been modified by applying polyelectrolyte multilayers. Secondly, polysulfone ultrafiltration membranes were modified by UV-photografting using sodium p-styrene sulfonate as a vinyl monomer. The catalytic performance of developed hollow fibers has been evaluated by using the reduction of nitrophenol to aminophenol by sodium borohydride. Hollow fiber modules with Pd MNPs have been tested in dead-end and cross-flow filtration. Complete nitrophenol degradation is possible depending on operation parameters such as applied pressure and permeate flux
Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework
Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the
strongest isotropic negative thermal expansion (NTE) effect yet reported for a
metal-organic framework (MOF). Incorporation of correlated vacancy defects
within the framework affects both the extent of thermal densification and the
magnitude of NTE observed in the densified product. We thus demonstrate that
defect inclusion can be used to tune systematically the physical behaviour of a
MOF.Comment: 8 pages, 4 figures, revise
Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles
Immobilization of metalnanoparticles in hollowfibermembranes via alternating adsorption of polyelectrolytes and negatively charged Au nanoparticles yields catalytic reactors with high surface areas. SEM images show that this technique deposits a high density of unaggregated metalnanoparticles both on the surfaces and in the pores of the hollowfibers. Catalytic reduction of 4-nitrophenol with NaBH4, which can be easily monitored by UV–vis spectrophotometry, demonstrates that the nanoparticles in the hollowfibermembrane are highly catalytically active. In a single pass through the membrane, >99% of the 4-nitrophenol is reduced to 4-aminophenol, but this conversion decreases over time. The conversion decline may stem from catalyst fouling caused by by-products of 4-aminophenol oxidation
- …
