23,135 research outputs found
Magnetic properties of the double perovskites LaPbMSbO6 (M = Mn, Co and Ni)
New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were
synthesized as polycrystals by an aqueous synthetic route at temperatures below
1000 oC. All samples are monoclinic, space group P21/n, as obtained from
Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+
and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+,
whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have
an antiferromagnetic transition, due to the antiferromagnetic coupling between
M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition
temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as
a consequence of the relatively long distances between the magnetic ions M2+.
Besides, for LaPbMnSbO6 a small transition at 45 K was found, with
ferrimagnetic characteristics, possibly as a consequence of a small disorder
between Mn2+ and Sb5+. This disorder would give additional and shorter
interaction paths: superexchange Mn2+ - O2- - Mn2+.Comment: 4 pages, 4 figures included. Manuscript submitted to IEEE
Transactions on Magnetics, proceedings of the LAW3M 2013 conferenc
Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux
Quasiperiodic pinning arrays, as recently demonstrated theoretically and
experimentally using a five-fold Penrose tiling, can lead to a significant
enhancement of the critical current Ic as compared to "traditional" regular
pinning arrays. However, while regular arrays showed only a sharp peak in
Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much
broader maximum at Phi<Phi1, both types of pinning arrays turned out to be
inefficient for fluxes larger than Phi1. We demonstrate theoretically and
experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose
quasiperiodic pinning arrays. This result is based on a qualitatively different
mechanism of flux pinning by quasiperiodic pinning arrays and could be
potentially useful for applications in superconducting micro-electronic devices
operating in a broad range of magnetic fields.Comment: 7 pages, 4 figure
Tailoring the ground state of the ferrimagnet La2Ni(Ni1/3Sb2/3)O6
We report on the magnetic and structural properties of La2Ni(Ni1/3Sb2/3)O6 in
polycrystal, single crystal and thin film samples. We found that this material
is a ferrimagnet (Tc ~ 100 K) which possesses a very distinctive and uncommon
feature in its virgin curve of the hysteresis loops. We observe that bellow 20
K it lies outside the hysteresis cycle, and this feature was found to be an
indication of a microscopically irreversible process possibly involving the
interplay of competing antiferromagnetic interactions that hinder the initial
movement of domain walls. This initial magnetic state is overcome by applying a
temperature dependent characteristic field. Above this field, an isothermal
magnetic demagnetization of the samples yield a ground state different from the
initial thermally demagnetized one.Comment: 21 pages, 8 figures, submitted to JMM
X-band noise temperature effects of rain on DSN antenna feedhorns
Simulated rain tests were carried out to determine the noise temperature contribution of liquid water adhering to the aperture cover material on both a standard DSN X-band feedhorn and on an S/X-band common aperture feedhorn. It was found that for the particular common aperture feedhorn tested, system noise temperature increases were much greater when the plastic horn cover material was old and weathered than when it was new. The age and condition of the aperture cover material is believed to be a major factor in the amount of degradation experienced by a telecommunications system during rain events
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
Supersymmetry Breaking from a Calabi-Yau Singularity
We conjecture a geometric criterion for determining whether supersymmetry is
spontaneously broken in certain string backgrounds. These backgrounds contain
wrapped branes at Calabi-Yau singularites with obstructions to deformation of
the complex structure. We motivate our conjecture with a particular example:
the quiver gauge theory corresponding to a cone over the first del
Pezzo surface, . This setup can be analyzed using ordinary supersymmetric
field theory methods, where we find that gaugino condensation drives a
deformation of the chiral ring which has no solutions. We expect this breaking
to be a general feature of any theory of branes at a singularity with a smaller
number of possible deformations than independent anomaly-free fractional
branes.Comment: 32 pages, 6 figures, latex, v2: minor changes, refs adde
Optimal path for a quantum teleportation protocol in entangled networks
Bellman's optimality principle has been of enormous importance in the
development of whole branches of applied mathematics, computer science, optimal
control theory, economics, decision making, and classical physics. Examples are
numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of
variations, and the brachistochrone problem. Here we show that Bellman's
optimality principle is violated in a teleportation problem on a quantum
network. This implies that finding the optimal fidelity route for teleporting a
quantum state between two distant nodes on a quantum network with bi-partite
entanglement will be a tough problem and will require further investigation.Comment: 4 pages, 1 figure, RevTeX
An SU(5)Z_{13} Grand Unification Model
We propose an SU(5) grand unified model with an invisible axion and the
unification of the three coupling constants which is in agreement with the
values, at , of , , and . A discrete,
anomalous, symmetry implies that the Peccei-Quinn symmetry is an
automatic symmetry of the classical Lagrangian protecting, at the same time,
the invisible axion against possible semi-classical gravity effects. Although
the unification scale is of the order of the Peccei-Quinn scale the proton is
stabilized by the fact that in this model the standard model fields form the
SU(5) multiplets completed by new exotic fields and, also, because it is
protected by the symmetry.Comment: 14 pages, more typos correcte
- …