23 research outputs found

    Opções de mitigação de gases do efeito estufa na mudança do uso da terra, pecuária e agricultura no Brasil

    Get PDF
    National inventories of anthropogenic greenhouse gas (GHG) emissions (implementation of the National Communications) are organized according to five main sectors, namely: Energy, Industrial Processes, Agriculture, Land-Use Change and Forestry (LUCF) and Waste. The objective of this study was to review and calculate the potential of greenhouse gas mitigation strategies in Brazil for the Agricultural and LUCF. The first step consisted in an analysis of Brazilian official and unofficial documents related to climate change and mitigation policies. Secondly, business as usual (BAU) and mitigation scenarios were elaborated for the 2010-2020 timeframe, and calculations of the corresponding associated GHG emissions and removals were performed. Additionally, two complementary approaches were used to point out and quantify the main mitigation options: a) following the IPCC 1996 guidelines and b) based on EX-ACT. Brazilian authorities announced that the country will target a reduction in its GHG between 36.1 and 38.9% from projected 2020 levels. This is a positive stand that should also be adopted by other developing countries. To reach this government goal, agriculture and livestock sectors must contribute with an emission reduction of 133 to 166 Mt CO2-eq. This seems to be reachable when confronted to our mitigation option values, which are in between the range of 178.3 to 445 Mt CO2-eq. Government investments on agriculture are necessary to minimize the efforts from the sectors to reach their targets.Inventários nacionais acerca de emissões de gases do efeito estufa (GEE) (refinamentos das Comunicações Nacionais) são organizadas de acordo com cinco principais setores, a saber: Energia, Processos Industriais, Agropecuária, Mudanças do Uso da Terra e Florestas e Tratamento de Resíduos. O objetivo dessa revisão foi calcular o potencial das estratégias de mitigação de GEE no Brasil para agropecuária e mudança de uso da terra e florestas. A primeira etapa consistiu na análise de documentos oficiais e não-oficiais do Brasil relacionados a mudanças climáticas e políticas de mitigação. O cenário atual, sem adoção de ações mitigadoras (BAU), e os cenários de mitigação foram elaborados para o período 2010-2020. Efetuaram-se os cálculos associados às emissões e remoções de GEE. Adicionalmente, duas estratégias foram utilizadas para destacar e quantificar as principais opções de mitigação: a) seguindo metodologia do IPCC 1996 e b) baseando-se no EX-ACT. Autoridades brasileiras anunciaram que o país buscará reduzir sua taxa de emissão de GEE em 36.1 a 38.9% em relação a 2020. Este é um posicionamento positivo que deve ser adotado por outros países em desenvolvimento. Para alcançar essa meta governamental, os setores agricultura e pecuária devem contribuir reduzindo a emissão em 133 a 166 Mt CO2-eq. Tal redução parece ser atingível quando confrontada com os valores do presente trabalho sobre opções de mitigação os quais estão entre 178,3 e 445 Mt CO2-eq. Investimentos governamentais nos setores agrícola, pecuária e silvicultura são necessários para minimizar os esforços para atingir as metas de redução de emissão pelos outros setores do país.CNPqFAPESPCAPES - COFECU

    Hojas de información: buenas prácticas para una agricultura climáticamente inteligente

    Get PDF
    Document available in English, Portuguese and Spanish.Este documento posee información sobre las buenas prácticas para una agricultura climáticamente inteligente, abarcando la agricultura de conservación para la la no alteración del suelo mediante la labranza, la cobertura permanente del suelo y la rotación de cultivos. Seguido de la restauración de los bosques naturales para la transformación de los Ecosistemas degradados. Al igual que la recuperación de los pastos por medio de la reducción de las emisiones de gases de efecto invernadero. Finalmente, se menciona la producción sostenible del café, para el sostenimiento de los medios de vida de millones de familias en todo el mundo.This document contains information about the good practices for climate-smart agriculture, encompassing conservation agriculture for non-alteration of the soil through tillage, permanent soil cover and crop rotation. Followed by the restoration of natural forests for the transformation of degraded ecosystems. Like the recovery of pastures by reducing greenhouse gas emissions. Finally, the sustainable production of coffee is mentioned, to sustain the livelihoods of millions of families around the world.Este documento contém informações sobre boas práticas para uma agricultura inteligente para o clima, abrangendo a agricultura de conservação para não alterar o solo por meio de preparo do solo, cobertura permanente do solo e rotação de culturas. Seguido pela restauração de florestas naturais para a transformação de ecossistemas degradados. Como a recuperação de pastagens, reduzindo as emissões de gases de efeito estufa. Por fim, menciona-se a produção sustentável de café, para sustentar a vida de milhões de famílias em todo o mundo

    Soil carbon stock as result of land use change under sugarcane cultivation in South Central region of Brazil

    No full text
    O Brasil se destaca como o maior produtor de cana-de-açúcar do planeta. Como resultado do aumento da demanda de açúcar e etanol, cerca de 4 milhões de hectares foram convertidos em áreas de cana-de-açúcar nos últimos 10 anos. Espera-se que outros 6 milhões de hectares sejam convertidos nos próximos 10 a 20 anos para suprir a demanda nacional de derivados dessa cultura. Estas modificações podem ocasionar a emissão de gases do efeito estufa, resultantes principalmente da decomposição da matéria orgânica do solo, o que pode levar a dívida de carbono. Por outro lado, a substituição de áreas degradadas pelo cultivo da cana-de-açúcar pode acarretar no incremento dos estoques de carbono dos solos promovendo o sequestro de carbono. O principal objetivo foi proceder a metodologia proposta pelo Painel Intergovernamental de Mudanças Climáticas (IPCC) da Organização das Nações Unidas para avaliar o impacto ocasionado pela expansão do cultivo da cana-de-açúcar sobre a matéria orgânica do solo e seu resultado em emissão de CO2 ou em sequestro de carbono. O total de 142 situações de campo foram avaliadas na região Centro Sul do Brasil, onde a cana-de-açúcar vem substituindo outros usos da terra gerando o total de 6318 amostras de solo que foram analisadas considerando as três principais conversões existentes para cana-de-açúcar no país: i) Cerrado; ii) Pastagens e iii) Áreas de cultivo anual. Os resultados obtidos indicam o decréscimo dos estoques de carbono dos solos quando o cultivo de cana-de-açúcar substitui o cerrado e áreas de pastagens, e promove o incremento quando áreas de culturas anuais são substituídas. Os fatores de mudança de uso da terra referente ao período de 20 anos após a conversão de cerrado para cana-de-açúcar referente às camadas 0-30 cm, 0-50 cm e 0-100 foram respectivamente 0,79 (±0,04), 0,86 (±0,04) e 0,94 (±0,04). Para a conversão de pastagens para o cultivo de cana-de-açúcar, os fatores de impacto de mudança de uso da terra foram 0,91 (±0,04), 0,94 (±0,04) e 0,98 (±0,04), e para a conversão de áreas de cultivo anual os fatores de impacto de mudança de uso da terra foram 1,20 (±0,18), 1,20 (±0,18) e 1,21 (±0,18). O período de compensação da dívida de carbono gerada foi estimado entre 3,5 a 6,3 anos considerando a substituição de cerrado, 1 a 2 anos para áreas convertidas de pastagens e zero para áreas oriundas de cultivo anual, onde não foi observada dívida de carbono. Espera-se que os resultados gerados por este trabalho de pesquisa possam subsidiar os tomadores de decisão como forma de desenvolver políticas apropriadas para a expansão do cultivo da cana de açúcar na região Centro Sul do Brasil promovendo desenvolvimento com baixo impacto ao meio ambienteBrazil figures as the major sugarcane producer in the world and as result of increasingly demand for sugar and ethanol about 4 millions of hectares were converted into sugarcane systems on last 10 years and others 6 millions of hectares are expected to be converted in next 10 to 20 years. This modification can increase greenhouse gas emissions as result of soil organic matter decomposition and lead to a carbon debt. The aim of this research paper was to perform the IPCC\'s Tier 2 approach to evaluate the impact of sugarcane expansion over the soil organic matter, and their results in CO2 emissions or soil carbon sequestration. A total of 142 field situations were studied in South-Central Brazil where sugarcane substituted other land uses, providing 79 comparison pairs and 6,318 soil samples that were analyzed considering three major conversions to sugarcane: i) Cerrado (Brazilian savannah); ii) Pastures; iii) Annual Cropland (maize or soybean). Our results indicate the decrease of soil carbon stocks when sugarcane overcomes cerrado and pastures, and an increase when annual cropland is replaced. The land use change impact factors after 20 years of conversion from cerrado to sugarcane for 0-30 cm, 0-50 cm and 0-100 cm layers were respectively 0.79 (±0.04), 0.86 (±0.04) and 0.94 (±0.04). For sugarcane replacing pastures the impact factors were 0.91 (±0.04), 0.94 (±0.04) and 0.98 (±0.04), and for the conversion from annual agriculture impact factors were 1.20 (±0.18), 1.20 (±0.18) and 1.21 (±0.18). The repay time for the carbon debt was estimated in 3.5 to 6.3 years considering the substitution of cerrado, 1 to 2 years for areas coming from pastures and zero for areas coming from cropland, where no carbon debt was found. We expect that results of this research paper can subsidize appropriate policies for sugarcane expansion in South-Central Brazil, promoting development with a lower environmental impac

    Estimates of soil carbon stocks for Rondônia and Mato Grosso states previously to anthropic intervention

    Get PDF
    O desmatamento e conseqüente uso da terra para pecuária e agricultura são as principais atividades causadoras das emissões de gases do efeito estufa no território brasileiro. Nos últimos 30 anos essa prática tem sido mais intensa no arco do desmatamento da Amazônia, e em particular, nos Estados de Rondônia e Mato Grosso. Atualmente, essa região se constitui na maior área de expansão agrícola do mundo e por isso, faz-se necessário avaliações mais aprimoradas das emissões de gases do efeito estufa. Para avaliar essas emissões é necessário inicialmente, estimar os estoques de carbono do solo e vegetação, antes da intervenção humana. O objetivo desta pesquisa foi estimar os estoques de carbono dos solos dos Estados de Rondônia e Mato Grosso e assim, auxiliar nos cálculos futuros da emissão de gases do efeito estufa devido à mudança do uso da terra. A presente estimativa foi efetuada através das seguintes etapas: constituição de uma base de dados georreferenciados com informações compiladas da literatura, estimativa das densidades dos solos para os perfis onde essa informação é inexistente, padronização das camadas de solos avaliadas através ajuste vertical da profundidade do perfil e finalmente, cálculo dos estoques de carbono do solo. A superfície dos estados de Rondônia e Mato Grosso foi dividida em 11 ecorregiões geradas através da sobreposição de mapas temáticos sobre solos, clima, vegetação nativa, topografia entre outros utilizando-se um Sistema de Informação Geográfica. Essa divisão em ecorregiões é uma recomendação do manual, produzido pelo Painel Intergovernamental de Mudanças Climáticas, que trata dos procedimentos oficiais para estimativa de emissão de gases do efeito estufa em nível nacional. As estimativas dos estoques de carbono foram efetuadas para cada um dos 15 grupos de solos existentes para cada uma das 11 ecorregiões. Os estoques médios de carbono dos solos (expressos em kg C m-2) para cada ecorregião apresentaram os seguintes valores: Alto Xingu (8,7); Bacia Sedimentar do Paraná (9,6); Chapada dos Parecis (12,3); Depressão Araguaia (6,7); Depressão Cuiabá-Paranatinga e região Serrana (10,4); Depressão Guaporé (15,2); Nordeste do Mato Grosso (11,2); Norte do Mato Grosso (9,8); Norte de Rondônia (8,7); Pantanal (7,5) e Rondônia Central (10,4). A integração dos cálculos dos estoques de carbono dos solos de cada uma das 11 ecorregiões que cobrem 1.128.000 km-2 aponta valores de 5,7±0,7 Pg C e 10,4±1,3 Pg C, respectivamente para as camadas 0-30 cm e 0-100 cm. Considerando apenas a camada 0-100 cm pode-se inferir que o total de 10,4 Pg C representa 0,7% do total de carbono estocado nos solos do globo (1576 Pg C). Esse valor é expressivo uma vez que estão concentrados em uma área de 1,12 milhões de km-2, ou seja, 0,008% da superfície total (cerca de 135,21 milhões de km2) dos solos do mundo. As informações aqui geradas são fundamentais para o projeto temático em desenvolvimento no Laboratório de Biogeoquímica Ambiental do CENA/USP, que trata das emissões de CO2 para atmosfera, geradas a partir da decomposição da matéria orgânica devido ao desmatamento e uso agrícola do solo nos Estados de Rondônia e Mato Grosso.Deforestation and consequent land use for agriculture and husbandry are the main activities that cause greenhouse gas emissions in the Brazilian territory. In the last 30 years these practices have been more intense at the Amazon deforestation arch, particularly in the States of Rondônia and Mato Grosso. Presently, the region represents the largest area of agricultural expansion in the world; therefore, it is necessary to better assess its greenhouse gas emissions. In order to evaluate those emissions it is initially necessary to estimate carbon stocks in soils and vegetations, previously to human intervention. The main objective of the present research was to estimate soil carbon stocks for Rondônia and Mato Grosso states and then assist in the future calculations of greenhouse gas emissions due to land use change. The present estimates were performed by developing the following tasks: constitution of a georreferenced data base with information compiled from the literature, estimate soil bulk density for profiles in which this information does not exist, standardization of soil layers through vertical adjustment of soil profile depth and finally, calculation of soil carbon stocks. The surface of Rondônia and Mato Grosso states was divided in 11 ecoregions generated by overlying thematic maps of soils, climate, native vegetation, topography and others through a Geographic Information System. This division in ecoregions is a recommendation from the guideline produced by the Intergovernmental Panel on Climate Change, that brings the official procedures to estimate the greenhouse gas emission for national scales. The soil carbon stock estimates were done for each one of the 15 soil groups in each of the 11 ecoregions. The mean soil carbon stocks (expressed in kg C m-2) for each ecoregion presented the following values: Alto Xingu (8.7); Bacia Sedimentar do Paraná (9.6); Chapada dos Parecis (12.3); Depressão Araguaia (6.7); Depressão Cuiabá-Paranatinga e região Serrana (10.4); Depressão Guaporé (15.2); Nordeste do Mato Grosso (11.2); Norte do Mato Grosso (9.8); Norte de Rondônia (8.7); Pantanal (7.5) e Rondônia Central (10.4). The integrated soil carbon stock calculations of each one of the 11 ecoregions that cover 1.128.000 km-2 showed values of 5.7±0.7 Pg C and 10.4±1.3 Pg C, for the 0-30 cm and 0-100 cm soil layers, respectively. Considering only the 0-100 cm soil layer it is possible to infer that the total of 10.4 Pg C represents 0.7% of the total carbon stored in the world soils (1576 Pg C). This is a meaningful value since it is concentrated in an area of 1.12 million km-2, i.e., 0.008% of the global soil surface (about 135.21 million km2). The information generated in the present research is essential for the thematic project that has been carried on by the Laboratório de Biogeoquímica Ambiental - CENA/USP, related to the CO2 emissions to the atmosphere, generated from soil organic matter decomposition due to deforestation and agricultural use of soils from Rondônia and Mato Grosso states

    Soil carbon stock as result of land use change under sugarcane cultivation in South Central region of Brazil

    No full text
    O Brasil se destaca como o maior produtor de cana-de-açúcar do planeta. Como resultado do aumento da demanda de açúcar e etanol, cerca de 4 milhões de hectares foram convertidos em áreas de cana-de-açúcar nos últimos 10 anos. Espera-se que outros 6 milhões de hectares sejam convertidos nos próximos 10 a 20 anos para suprir a demanda nacional de derivados dessa cultura. Estas modificações podem ocasionar a emissão de gases do efeito estufa, resultantes principalmente da decomposição da matéria orgânica do solo, o que pode levar a dívida de carbono. Por outro lado, a substituição de áreas degradadas pelo cultivo da cana-de-açúcar pode acarretar no incremento dos estoques de carbono dos solos promovendo o sequestro de carbono. O principal objetivo foi proceder a metodologia proposta pelo Painel Intergovernamental de Mudanças Climáticas (IPCC) da Organização das Nações Unidas para avaliar o impacto ocasionado pela expansão do cultivo da cana-de-açúcar sobre a matéria orgânica do solo e seu resultado em emissão de CO2 ou em sequestro de carbono. O total de 142 situações de campo foram avaliadas na região Centro Sul do Brasil, onde a cana-de-açúcar vem substituindo outros usos da terra gerando o total de 6318 amostras de solo que foram analisadas considerando as três principais conversões existentes para cana-de-açúcar no país: i) Cerrado; ii) Pastagens e iii) Áreas de cultivo anual. Os resultados obtidos indicam o decréscimo dos estoques de carbono dos solos quando o cultivo de cana-de-açúcar substitui o cerrado e áreas de pastagens, e promove o incremento quando áreas de culturas anuais são substituídas. Os fatores de mudança de uso da terra referente ao período de 20 anos após a conversão de cerrado para cana-de-açúcar referente às camadas 0-30 cm, 0-50 cm e 0-100 foram respectivamente 0,79 (±0,04), 0,86 (±0,04) e 0,94 (±0,04). Para a conversão de pastagens para o cultivo de cana-de-açúcar, os fatores de impacto de mudança de uso da terra foram 0,91 (±0,04), 0,94 (±0,04) e 0,98 (±0,04), e para a conversão de áreas de cultivo anual os fatores de impacto de mudança de uso da terra foram 1,20 (±0,18), 1,20 (±0,18) e 1,21 (±0,18). O período de compensação da dívida de carbono gerada foi estimado entre 3,5 a 6,3 anos considerando a substituição de cerrado, 1 a 2 anos para áreas convertidas de pastagens e zero para áreas oriundas de cultivo anual, onde não foi observada dívida de carbono. Espera-se que os resultados gerados por este trabalho de pesquisa possam subsidiar os tomadores de decisão como forma de desenvolver políticas apropriadas para a expansão do cultivo da cana de açúcar na região Centro Sul do Brasil promovendo desenvolvimento com baixo impacto ao meio ambienteBrazil figures as the major sugarcane producer in the world and as result of increasingly demand for sugar and ethanol about 4 millions of hectares were converted into sugarcane systems on last 10 years and others 6 millions of hectares are expected to be converted in next 10 to 20 years. This modification can increase greenhouse gas emissions as result of soil organic matter decomposition and lead to a carbon debt. The aim of this research paper was to perform the IPCC\'s Tier 2 approach to evaluate the impact of sugarcane expansion over the soil organic matter, and their results in CO2 emissions or soil carbon sequestration. A total of 142 field situations were studied in South-Central Brazil where sugarcane substituted other land uses, providing 79 comparison pairs and 6,318 soil samples that were analyzed considering three major conversions to sugarcane: i) Cerrado (Brazilian savannah); ii) Pastures; iii) Annual Cropland (maize or soybean). Our results indicate the decrease of soil carbon stocks when sugarcane overcomes cerrado and pastures, and an increase when annual cropland is replaced. The land use change impact factors after 20 years of conversion from cerrado to sugarcane for 0-30 cm, 0-50 cm and 0-100 cm layers were respectively 0.79 (±0.04), 0.86 (±0.04) and 0.94 (±0.04). For sugarcane replacing pastures the impact factors were 0.91 (±0.04), 0.94 (±0.04) and 0.98 (±0.04), and for the conversion from annual agriculture impact factors were 1.20 (±0.18), 1.20 (±0.18) and 1.21 (±0.18). The repay time for the carbon debt was estimated in 3.5 to 6.3 years considering the substitution of cerrado, 1 to 2 years for areas coming from pastures and zero for areas coming from cropland, where no carbon debt was found. We expect that results of this research paper can subsidize appropriate policies for sugarcane expansion in South-Central Brazil, promoting development with a lower environmental impac

    Estimates of soil carbon stocks for Rondônia and Mato Grosso states previously to anthropic intervention

    No full text
    O desmatamento e conseqüente uso da terra para pecuária e agricultura são as principais atividades causadoras das emissões de gases do efeito estufa no território brasileiro. Nos últimos 30 anos essa prática tem sido mais intensa no arco do desmatamento da Amazônia, e em particular, nos Estados de Rondônia e Mato Grosso. Atualmente, essa região se constitui na maior área de expansão agrícola do mundo e por isso, faz-se necessário avaliações mais aprimoradas das emissões de gases do efeito estufa. Para avaliar essas emissões é necessário inicialmente, estimar os estoques de carbono do solo e vegetação, antes da intervenção humana. O objetivo desta pesquisa foi estimar os estoques de carbono dos solos dos Estados de Rondônia e Mato Grosso e assim, auxiliar nos cálculos futuros da emissão de gases do efeito estufa devido à mudança do uso da terra. A presente estimativa foi efetuada através das seguintes etapas: constituição de uma base de dados georreferenciados com informações compiladas da literatura, estimativa das densidades dos solos para os perfis onde essa informação é inexistente, padronização das camadas de solos avaliadas através ajuste vertical da profundidade do perfil e finalmente, cálculo dos estoques de carbono do solo. A superfície dos estados de Rondônia e Mato Grosso foi dividida em 11 ecorregiões geradas através da sobreposição de mapas temáticos sobre solos, clima, vegetação nativa, topografia entre outros utilizando-se um Sistema de Informação Geográfica. Essa divisão em ecorregiões é uma recomendação do manual, produzido pelo Painel Intergovernamental de Mudanças Climáticas, que trata dos procedimentos oficiais para estimativa de emissão de gases do efeito estufa em nível nacional. As estimativas dos estoques de carbono foram efetuadas para cada um dos 15 grupos de solos existentes para cada uma das 11 ecorregiões. Os estoques médios de carbono dos solos (expressos em kg C m-2) para cada ecorregião apresentaram os seguintes valores: Alto Xingu (8,7); Bacia Sedimentar do Paraná (9,6); Chapada dos Parecis (12,3); Depressão Araguaia (6,7); Depressão Cuiabá-Paranatinga e região Serrana (10,4); Depressão Guaporé (15,2); Nordeste do Mato Grosso (11,2); Norte do Mato Grosso (9,8); Norte de Rondônia (8,7); Pantanal (7,5) e Rondônia Central (10,4). A integração dos cálculos dos estoques de carbono dos solos de cada uma das 11 ecorregiões que cobrem 1.128.000 km-2 aponta valores de 5,7±0,7 Pg C e 10,4±1,3 Pg C, respectivamente para as camadas 0-30 cm e 0-100 cm. Considerando apenas a camada 0-100 cm pode-se inferir que o total de 10,4 Pg C representa 0,7% do total de carbono estocado nos solos do globo (1576 Pg C). Esse valor é expressivo uma vez que estão concentrados em uma área de 1,12 milhões de km-2, ou seja, 0,008% da superfície total (cerca de 135,21 milhões de km2) dos solos do mundo. As informações aqui geradas são fundamentais para o projeto temático em desenvolvimento no Laboratório de Biogeoquímica Ambiental do CENA/USP, que trata das emissões de CO2 para atmosfera, geradas a partir da decomposição da matéria orgânica devido ao desmatamento e uso agrícola do solo nos Estados de Rondônia e Mato Grosso.Deforestation and consequent land use for agriculture and husbandry are the main activities that cause greenhouse gas emissions in the Brazilian territory. In the last 30 years these practices have been more intense at the Amazon deforestation arch, particularly in the States of Rondônia and Mato Grosso. Presently, the region represents the largest area of agricultural expansion in the world; therefore, it is necessary to better assess its greenhouse gas emissions. In order to evaluate those emissions it is initially necessary to estimate carbon stocks in soils and vegetations, previously to human intervention. The main objective of the present research was to estimate soil carbon stocks for Rondônia and Mato Grosso states and then assist in the future calculations of greenhouse gas emissions due to land use change. The present estimates were performed by developing the following tasks: constitution of a georreferenced data base with information compiled from the literature, estimate soil bulk density for profiles in which this information does not exist, standardization of soil layers through vertical adjustment of soil profile depth and finally, calculation of soil carbon stocks. The surface of Rondônia and Mato Grosso states was divided in 11 ecoregions generated by overlying thematic maps of soils, climate, native vegetation, topography and others through a Geographic Information System. This division in ecoregions is a recommendation from the guideline produced by the Intergovernmental Panel on Climate Change, that brings the official procedures to estimate the greenhouse gas emission for national scales. The soil carbon stock estimates were done for each one of the 15 soil groups in each of the 11 ecoregions. The mean soil carbon stocks (expressed in kg C m-2) for each ecoregion presented the following values: Alto Xingu (8.7); Bacia Sedimentar do Paraná (9.6); Chapada dos Parecis (12.3); Depressão Araguaia (6.7); Depressão Cuiabá-Paranatinga e região Serrana (10.4); Depressão Guaporé (15.2); Nordeste do Mato Grosso (11.2); Norte do Mato Grosso (9.8); Norte de Rondônia (8.7); Pantanal (7.5) e Rondônia Central (10.4). The integrated soil carbon stock calculations of each one of the 11 ecoregions that cover 1.128.000 km-2 showed values of 5.7±0.7 Pg C and 10.4±1.3 Pg C, for the 0-30 cm and 0-100 cm soil layers, respectively. Considering only the 0-100 cm soil layer it is possible to infer that the total of 10.4 Pg C represents 0.7% of the total carbon stored in the world soils (1576 Pg C). This is a meaningful value since it is concentrated in an area of 1.12 million km-2, i.e., 0.008% of the global soil surface (about 135.21 million km2). The information generated in the present research is essential for the thematic project that has been carried on by the Laboratório de Biogeoquímica Ambiental - CENA/USP, related to the CO2 emissions to the atmosphere, generated from soil organic matter decomposition due to deforestation and agricultural use of soils from Rondônia and Mato Grosso states

    Componentes da produção e produtividade de cultivares de arroz e feijão em função de calcário e gesso aplicados na superfície do solo

    No full text
    A utilização do gesso agrícola e de cultivares mais tolerantes à acidez do solo podem ser alternativa para viabilizar o cultivo em sistema plantio direto sem a incorporação prévia do calcário. Este trabalho foi realizado com o objetivo de avaliar o efeito da aplicação superficial de calcário e gesso agrícola nos componentes da produção e na produtividade de grãos de cultivares de arroz e feijão. O experimento foi instalado em Latossolo Vermelho distroférrico, anteriormente manejado no sistema convencional de preparo do solo, em Botucatu (SP). O delineamento foi em blocos casualizados com parcelas sub-subdivididas e quatro repetições. Nas parcelas, os tratamentos foram os seguintes: quatro doses de calcário dolomítico (0, 1.100, 2.700 e 4.300 kg ha-1); nas subparcelas, aplicação ou não de 2.100 kg ha-1 de gesso agrícola; e nas sub-subparcelas, foram cultivadas duas cultivares de arroz de terras altas (Caiapó e IAC 202), no ano agrícola 2002/2003, e duas de feijão (Pérola e Carioca), em 2003/2004. O número de panículas por m², o número de espiguetas por panícula, a massa de mil grãos e a produtividade de grãos das cultivares de arroz aumentaram pela aplicação de calcário. A aplicação de gesso aumentou o número de panículas por m² e a produtividade de grãos da cultivar Caiapó, mas reduziu o número de panículas e não afetou a produtividade da cultivar IAC 202. A calagem, na ausência de gesso, aumentou o número de vagens por planta e a produtividade de grãos das cultivares de feijão. A aplicação de gesso reduziu o número de vagens por planta da cultivar Carioca de feijão, mas não alterou outros componentes da produção e a produtividade de grãos. A dose de calcário para elevar a saturação por bases a 70% foi a mais adequada para ambas as culturas. O uso de cultivares mais tolerantes à acidez do solo proporciona maior produtividade no início do sistema plantio direto, quando ainda não houve efetiva correção do solo pela aplicação de corretivos em superfície.The use of phosphogypsum and more tolerant cultivars to soil acidity can be an alternative to enable crops in no-tillage system, without previous lime incorporation. This trial was carried out to evatuate the effects of lime and phosphogypsum surface application on yield components as well as on grain yield of upland rice and common bean cultivars, in no-tillage system. The experiment was done on a Haplorthox, previously cultivated on conventional tillage system, in Botucatu, São Paulo State, Brazil. A randomized complete block design, in split-split-plot scheme, and four replications were used. The plots comprised four dolomite limestone rates (0, 1,100, 2,700, and 4,300 kg ha-1); in the subplots phosphogypsum was applied at the rates: 0 and 2,100 kg ha-1. Two upland rice cultivars ('Caiapó' and 'IAC 202') were grown in the sub-subplots in 2002/2003 cropping season, and two common bean cultivars ('Carioca' and 'Pérola'), in 2003/2004. The number of panicles per m², spikelets per panicles, mass of 1,000 grains, and grain yield of upland rice cultivars was increased with lime surface application. Phosphogypsum application increased the number of panicles per m² and grains yield of the 'Caiapó' rice cultivar, but decreased the number of panicles per m² and did not affect grain yield of the 'IAC 202' cultivar. Lime surface application, without phosphogypsum, increased the number of pods per plant and grain yield of both bean cultivars. Phosphogypsum application decreased the number of pods per plant of the 'Carioca' bean cultivar, but did not affect other yield components or grain yield. The lime dose to raise the base saturation to 70% was optimal for both crops. Using soil acidity tolerant cultivars promoted higher crop yields in no-till systems establishment, even when the effective soil amelioration had not yet been achieved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    No full text
    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level
    corecore