40 research outputs found

    The formation of the double neutron star pulsar J0737--3039

    Full text link
    We find that the orbital period (2.4 hours), eccentricity (0.09), dipole magnetic field strength (6.9 x 10^9 Gauss) and spin period (22 ms) of the new highly relativistic double neutron star system PSR J0737-3039 can all be consistently explained if this system originated from a close helium star plus neutron star binary (HeS-NS) in which at the onset of the evolution the helium star had a mass in the range 4.0 to 6.5 M_sun and an orbital period in the range 0.1 to 0.2 days. Such systems are the post-Common-Envelope remnants of wide Be/X-ray binaries (orbital period ~ 100 to 1000 days) which consist of a normal hydrogen-rich star with a mass in the range 10 - 20 M_sun and a neutron star. The close HeS-NS progenitor system went through a phase of mass transfer by Roche-lobe overflow at a high rate lasting a few times 10^4 years; assuming Eddington-limited disk accretion onto the neutron star this star was spun up to its present rapid spin rate. At the moment of the second supernova explosion the He star had a mass in the range 2.3 to 3.3 M_sun and in order to obtain the present orbital parameters of PSR J0737-3039 a kick velocity in the range 70 - 230 km/s must have been imparted to the second neutron star at its birth.Comment: accepted by MNRA

    Thin Disk Models of Anomalous X-ray Pulsars

    Full text link
    We discuss the options of the fall-back disk model of Anomalous X-Ray Pulsars (AXPs). We argue that the power-law index of the mass inflow rate during the propeller stage can be lower than those employed in earlier models. We take into account the effect of the super-critical mass inflow at the earliest stages on the inner radius of the disk and argue that the system starts as a propeller. Our results show that, assuming a fraction of the mass inflow is accreted onto the neutron star, the fall-back disk scenario can produce AXPs for acceptable parameters.Comment: 6 pages, 2 figures, Proc. of the II BeppoSAX Meeting: "The Restless High-Energy Universe" (Amsterdam, May 5-8, 2003), E.P.J. van den Heuvel, J.J.M. in 't Zand, and R.A.M.J. Wijers Ed

    The Evolution of Relativistic Binary Progenitor Systems

    Get PDF
    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation and helium star mass. It is, indeed, determined that the majority of such systems end up in the pulsar "graveyard", and only a small fraction are strongly recycled. This fact might help to reconcile theoretically expected birth rates with limited observations of relativistic binary pulsars.Comment: 24 pages, 10 Postscript figures, Submitted to The Astrophysical Journa

    Progenitor neutron stars of the lightest and heaviest millisecond pulsars

    Full text link
    The recent mass measurements of two binary millisecond pulsars, PSR J1614-2230 and PSR J0751+1807 with a mass M=1.97+/-0.04 Msun and M= 1.26 +/- 0.14 Msun, respectively, indicate a wide range of masses for such objects and possibly also a broad spectrum of masses of neutron stars born in core-collapse supernovae. Starting from the zero-age main sequence binary stage, we aim at inferring the birth masses of PSR J1614-2230 and PSR J0751+1807 by taking the differences in the evolutionary stages preceding their formation into account. Using simulations for the evolution of binary stars, we reconstruct the evolutionary tracks leading to the formation of PSR J1614-2230 and PSR J0751+1807. We analyze in detail the spin evolution due to the accretion of matter from a disk in the intermediate-mass/low-mass X-ray binary. We consider two equations of state of dense matter, one for purely nucleonic matter and the other one including a high-density softening due to the appearance of hyperons. Stationary and axisymmetric stellar configurations in general relativity are used, together with a recent magnetic torque model and observationally-motivated laws for the decay of magnetic field. The estimated birth mass of the neutron stars PSR J0751+1807 and PSR J1614-2230 could be as low as 1.0 Msun and as high as 1.9 Msun, respectively. These values depend weakly on the equation of state and the assumed model for the magnetic field and its accretion-induced decay. The masses of progenitor neutron stars of recycled pulsars span a broad interval from 1.0 Msun to 1.9 Msun. Including the effect of a slow Roche-lobe detachment phase, which could be relevant for PSR J0751+1807, would make the lower mass limit even lower. A realistic theory for core-collapse supernovae should account for this wide range of mass.Comment: 13 pages, 10 figures, accepted in A&

    Possible changes of state and relevant timescales for a neutron star in LS I +61{\deg}303

    Full text link
    The properties of the short, energetic bursts recently observed from the gamma-ray binary LS I +61{\deg}303, are typical of those showed by high magnetic field neutron stars, and thus provide a strong indication in favor of a neutron star being the compact object in the system. Here, we discuss the transitions among the states accessible to a neutron star in a system like LS I +61{\deg}303, such as the ejector, propeller and accretor phases, depending on the NS spin period, magnetic field and rate of mass captured. We show how the observed bolometric luminosity (>= few x 1E35 erg/s), and its broad-band spectral distribution, indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit, and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent by the system in each of them. Even taking into account the constraint set by the observed gamma-ray luminosity, we found that the total age of the system is compatible with being ~5-10 kyr, comparable to the typical spin-down ages of high-field neutron stars. The results obtained are discussed in the context of the various evolutionary stages expected for a neutron star with a high mass companion.Comment: 12 pages, 6 figures. Accepted for publication in Ap

    On the progenitors of millisecond pulsars by the recycling evolutionary channel

    Full text link
    The recycling model suggested that low-mass X-ray binaries (LMXBs) could evolve into binary millisecond pulsars (BMSPs). In this work, we attempt to investigate the progenitor properties of BMSPs formed by the recycling evolutionary channel, and if sub-millisecond pulsars can be produced by this channel. Using Eggleton's stellar evolution code, considering that the dead pulsars can be spun up to a short spin period by the accreting material and angular momentum from the donor star, we have calculated the evolution of close binaries consisting of a neutron star and a low-mass main-sequence donor star, and the spin evolution of NSs. In calculation, some physical process such as the thermal and viscous instability of a accretion disk, propeller effect, and magnetic braking are included. Our calculated results indicate that, all LMXBs with a low-mass donor star of 1.0 - 2.0 MM_\odot and a short orbital period (\la 3-4 \rm d) can form millisecond pulsars with a spin period less than 10 ms. However, it is difficult to produce sub-millisecond pulsars by this evolutionary channel. In addition, our evolutionary scenario cannot account for the existence of BMSPs with a long orbital period (P_{\rm orb}\ga 70-80\rm d).Comment: 7 pages,5 figures, MNRAS in pres

    Spectral properties of anomalous X-ray pulsars

    Full text link
    In this paper, the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with spin-down rate Ω˙\dot{\Omega} is considered. Firstly, based on an accretion-powered model, the influences of both magnetic field and mass accretion rate on the spectra properties of AXPs are addressed. Subsequently, the relation between the spectral property of AXPs and mass accretion rate M˙\dot{M} is investigated. The result shows that there exists a linear correlation between the photon index and mass accretion rate, and the spectral hardness increases with increasing M˙\dot{M}. A possible emission mechanism for the explanation of spectral properties of AXPs is also discussed.Comment: 11pages, 3 figures, Chin. J. Astron. Astrophys. in pres

    Treatment of periorbital syringomas: review of scientific literature in the last 5 years

    Get PDF
    Introduction: Syringomas are benign adnexal tumors with histopathological characteristics arising from the eccrine ducts, in yellowish or skin-colored papules, 1-3 mm, commonly in the lower periorbital region, which can cause important cosmetic problems. The goal of treatment is to improve appearance by destroying the tumor using minimally invasive methods and including surgery. There are multiple treatment options in the literature with varying degrees of success, but little is known about their effectiveness. Complete removal is unsuccessful, and side effects have been described, recurrence being the most frequent.Methods: This is a narrative review of the literature of scientific publications in the period 2014-2019.Results: After reviewing 45 articles and identifying those published in the last five years that had a record of the number of patients, treatment description, scales of evaluation of results and follow-up, six articles were selected. Of the total number of six articles, we found: a systematic review and five retrospective studies, one being a comparative one. A number was assigned to each article analyzed, and the number of patients included, treatment performed, assessment scales and results, complications and conclusions were collected. Conclusions: Periorbital syringomas are still a therapeutic challenge, and so far, no treatment is consistently effective. The CO2 laser remains the first choice of treatment when used fractionally, and intralesional electrocoagulation represents a second alternative with moderate results and a lower risk of complications. New treatments such as Laser Erbium Yttrium Aluminum Garnet, Neodymium-Doped Yttrium Aluminum Garnet and botulinum toxin A monotherapy could be good alternatives. Comparative prospective studies are needed

    A Fallback Disk Accretion-Involved Formation Channel to PSR J1903+0327

    Full text link
    The discovery of the eccentric binary and millisecond pulsar PSR J1903+03273 has raised interesting questions about the formation mechanisms of this peculiar system. Here we present a born-fast scenario for PSR J1903+03273. We assume that during the supernova (SN) explosion that produced the pulsar, a fallback disk was formed around and accreted onto the newborn neutron star. Mass accretion could accelerate the neutron star's spin to milliseconds, and decrease its magnetic field to 108109\sim 10^8-10^9 G, provided that there was sufficient mass (\sim 0.1 M_{\sun}) in the fallback disk. The neutron star became a millisecond pulsar after mass accretion terminated. In the meanwhile the binary orbit has kept to be eccentric (due to the SN explosion) for 109\sim 10^{9} yr. We have performed population synthesis calculations of the evolutions of neutron stars with a fallback disk, and found that there might be tens to hundreds of PSR J1903+03273-like systems in the Galaxy. This scenario also suggests that some fraction of isolated millisecond pulsars in the Galactic disk could be formed through the same channel.Comment: 17 pages, 2 figures, accepted to Ap
    corecore