5,546 research outputs found

    Francis West – leadership and being first aren’t the same things: an assessment of the UK national action plan on business and human rights

    Get PDF
    For at least 30 years, the microfinance movement sought to provide credit in settings where strong constraints meant traditional banking methods weren’t feasible

    A 2-dimensional Geometry for Biological Time

    Get PDF
    This paper proposes an abstract mathematical frame for describing some features of biological time. The key point is that usual physical (linear) representation of time is insufficient, in our view, for the understanding key phenomena of life, such as rhythms, both physical (circadian, seasonal ...) and properly biological (heart beating, respiration, metabolic ...). In particular, the role of biological rhythms do not seem to have any counterpart in mathematical formalization of physical clocks, which are based on frequencies along the usual (possibly thermodynamical, thus oriented) time. We then suggest a functional representation of biological time by a 2-dimensional manifold as a mathematical frame for accommodating autonomous biological rhythms. The "visual" representation of rhythms so obtained, in particular heart beatings, will provide, by a few examples, hints towards possible applications of our approach to the understanding of interspecific differences or intraspecific pathologies. The 3-dimensional embedding space, needed for purely mathematical reasons, allows to introduce a suitable extra-dimension for "representation time", with a cognitive significance.Comment: Presented in an invited Lecture, conference "Biologie e selezioni naturali", Florence, December 4-8, 200

    Making and shaping endochondral and intramembranous bones

    Get PDF
    Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair

    An Empirical Investigation of Collective Bargaining Theories

    Get PDF

    Using The Major Field Test-Business As An Assessment Tool And Impetus For Program Improvement: Fifteen Years Of Experience At Virginia Military Institute

    Get PDF
    We examine the history of VMI’s use of the Major Field Test as an assessment tool for its Department of Economics and Business.  Further, we chronicle how the information gathered from a decade and a half of use has shaped the curriculum, faculty composition and policies within the Department. There is evidence that the policies surrounding how and when the Major Field Test is administered influences student performance on the test and that it can be a valuable component of a comprehensive assessment program. &nbsp

    Reduction of Plasmid Vector Backbone Length Enhances Reporter Gene Expression

    Get PDF
    Gene therapy has a wide range of applications for various types of pathologies. Viral methods of gene delivery provide high levels of gene expression but have various safety concerns. Non-viral methods are largely known to provide lower levels of expression. We aim to address this issue by using plasmid DNA with smaller backbones to increase gene expression levels when delivered using non-viral methods. In this study we compare gene expression levels between two vectors with firefly luciferase encoding gene insert using liposome complexes and gene electrotransfer as delivery methods. A 2-fold reduction in plasmid vector backbone size, disproportionately enhanced gene expression levels more than 10-fold in rat tenocytes in vitro, and rat myocardium in vivo, while improvements in delivery to the skin were more moderate
    • 

    corecore