165 research outputs found

    Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution Licence.Electron density is a fundamental quantity that enables understanding of the chemical bonding in a molecule or in a solid and the chemical/physical property of a material. Because electrons have a charge and a spin, two kinds of electron densities are available. Moreover, because electron distribution can be described in momentum or in position space, charge and spin density have two definitions and they can be observed through Bragg (for the position space) or Compton (for the momentum space) diffraction experiments, using X-rays (charge density) or polarized neutrons (spin density). In recent years, we have witnessed many advances in this field, stimulated by the increased power of experimental techniques. However, an accurate modelling is still necessary to determine the desired functions from the acquired data. The improved accuracy of measurements and the possibility to combine information from different experimental techniques require even more flexibility of the models. In this short review, we analyse some of the most important topics that have emerged in the recent literature, especially the most thought-provoking at the recent IUCr general meeting in Montreal.PM thanks the Swiss National Science foundation (Project 160157) for financial support. CL and NC are grateful to Universite de Lorraine, Agence Nationale de la recherche and CNRS, for instrumental and financial support. JMG thanks CentraleSupélec, ANR and CNRS for financial support.Peer Reviewe

    Monolithic Cells for Solar Fuels.

    Get PDF
    A tutorial review explaining the many processes occurring in photoelectrochemical cells for solar fuel production, and prospects for future developments

    A breathing zirconium metal-organic framework with reversible loss of crystallinity by correlated nanodomain formation

    Get PDF
    The isoreticular analogue of the metal-organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7-10 unit cells

    Etude par RMN des mécanismes de formation par hydrolyse des polycations d'aluminium

    No full text
    STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Hydrothermal Synthesis, Structure, and Solid State 19

    No full text
    • …
    corecore