386 research outputs found

    The Microbiological Context of HIV Resistance: Vaginal Microbiota and Mucosal Inflammation at the Viral Point of Entry

    Get PDF
    Immune activation is increasingly recognized as a critical element of HIV infection and pathogenesis, causing expansion of virus founder populations at the mucosal port of entry and eventual exhaustion of cellular immune effectors. HIV susceptibility is well known to be influenced by concurrent sexually transmitted infections; however, the role of commensal vaginal microbiota is poorly characterized. Bacterial vaginosis (BV) is a risk factor for HIV acquisition in studies worldwide; however, the etiology of BV remains enigmatic, and the mechanisms by which BV increases HIV susceptibility are not fully defined. A model of how vaginal microbiota influences HIV transmission is considered in the context of a well-established cohort of HIV-exposed seronegative (HESN) commercial sex workers (CSW) in Nairobi, Kenya, many of whom have increased levels of anti-inflammatory factors in vaginal secretions and reduced peripheral immune activation (immune quiescence). Elucidation of the relationship between complex microbial communities and inflammatory mucosal responses underlying HIV infection should be a priority for future prevention-focussed research

    The effect of bronchial thermoplasty on airway volume measured 12 months post-procedure

    Get PDF
    Bronchial thermoplasty induces atrophy of the airway smooth muscle layer, but the mechanism whereby this improves patient health is unclear. In this study, we use computed tomography (CT) to evaluate the effects of bronchial thermoplasty on airway volume 12 months post-procedure. 10 consecutive patients with severe asthma were evaluated at baseline by the Asthma Control Questionnaire (ACQ), and high-resolution CT at total lung capacity (TLC) and functional residual capacity (FRC). The CT protocol was repeated 4 weeks after the left lung had been treated by bronchial thermoplasty, but prior to right lung treatment, and then again 12 months after both lungs were treated. The CT data were also used to model the implications of including the right middle lobe (RML) in the treatment field. The mean patient age was 62.7 +/- 7.7 years and forced expiratory volume in 1 s (FEV1) 42.9 +/- 11.5% predicted. 12 months post-bronchial-thermoplasty, the ACQ improved, from 3.4 +/- 1.0 to 1.5 +/- 0.9 (p=0.001), as did the frequency of oral steroid-requiring exacerbations (p=0.008). The total airway volume increased 12 months after bronchial thermoplasty in both the TLC (p=0.03) and the FRC scans (p=0.02). No change in airway volume was observed in the untreated central airways. In the bronchial thermoplasty-treated distal airways, increases in airway volume of 38.4 +/- 31.8% at TLC (p=0.03) and 30.0 +/- 24.8% at FRC (p=0.01) were observed. The change in distal airway volume was correlated with the improvement in ACQ (r=-0.71, p=0.02). Modelling outputs demonstrated that treating the RML conferred no additional benefit. Bronchial thermoplasty induces long-term increases in airway volume, which correlate with symptomatic improvement

    HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression

    Get PDF
    Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression

    Genetic Analysis of Human Immunodefiency Virus Type I Strains in Kenya: A Comparison Using Phylogenetic Analysis and a Combinatorial Melting Assay

    Get PDF
    We surveyed human immunodeficiency virus (HIV) subtype distribution from peripheral blood mononuclear cells (PBMCs) collected in 1995 from 24 HIV-1-infected Kenyan residents (specimens from predominantly male truck drivers and female sex workers near Mombasa and Nairobi). Processed lysates from the PBMC samples were used for env amplification, directly sequenced, and analyzed by phylogenetic analysis. Envelope amplification products were also used for analysis in a polymerase chain reaction (PCR)-based assay, called the combinatorial melting assay (COMA). Results of the two tests were compared for assignment of subtype for this Kenyan cohort. The COMA, a PCR capture technique with colorimetric signal detection, was used with HIV reference subtype strains as well as regional (East Africa) HIV strains for subtype identification. Performance of the COMA was at 100% concordance (24 of 24) as compared with DNA sequencing analysis. Phylogenetic analysis showed 17 isolates to be subtype A, 3 subtype D, and 4 subtype C viruses. This may represent an increase in subtype C presence in Kenya compared with previously documented reports. The COMA can offer advantages for rapid HIV-1 subtype screening of large populations, with the use of previously identified regional strains to enhance the identification of local strains. When more detailed genetic information is desired, DNA sequencing and analysis may be required

    Presence of CD8+ T Cells in the Ectocervical Mucosa Correlates with Genital Viral Shedding in HIV-Infected Women despite a Low Prevalence of HIV RNA–Expressing Cells in the Tissue

    Get PDF
    The female genital tract is a portal of entry for sexual HIV transmission and a possible viral reservoir. In this study, the ectocervical CD8+ T cell distribution was explored in situ and was related to expression of CD3 and HLA-DR and presence of HIV RNA. For this purpose, ectocervical tissue samples and genital secretions were collected from HIV-seropositive (HIV+) Kenyan female sex workers (FSWs) (n = 20), HIV-seronegative (HIV−) FSWs (n = 17), and HIV− lower-risk women (n = 21). Cell markers were assessed by in situ staining and by quantitative PCR. HIV RNA expression in tissue was analyzed by in situ hybridization, and viral shedding was assessed by quantitative PCR. The HIV+FSW group had a higher amount of total cells and CD8+, CD3+, and HLA-DR+ cells compared with the HIV−FSW group and HIV− lower-risk women. The majority of CD8+ cells were CD3+ T cells, and the numbers of CD8+ cells correlated significantly with plasma and cervical viral load. HIV RNA expression in situ was found in 4 of the 20 HIV+FSW women but did not correlate with cervical or plasma viral load. Thus, the HIV+ women displayed high numbers of CD8+, CD3+, and HLA-DR+ cells, as well as a limited number of HIV RNA+ cells, in their ectocervical mucosa; hence, this localization cannot be neglected as a potential viral reservoir. The elevated levels of CD8+ T cells may play a role in the immunopathogenesis of HIV in the female genital tract

    Presence of CD8+ T Cells in the Ectocervical Mucosa Correlates with Genital Viral Shedding in HIV-Infected Women despite a Low Prevalence of HIV RNA–Expressing Cells in the Tissue

    Get PDF
    The female genital tract is a portal of entry for sexual HIV transmission and a possible viral reservoir. In this study, the ectocervical CD8+ T cell distribution was explored in situ and was related to expression of CD3 and HLA-DR and presence of HIV RNA. For this purpose, ectocervical tissue samples and genital secretions were collected from HIV-seropositive (HIV+) Kenyan female sex workers (FSWs) (n = 20), HIV-seronegative (HIV−) FSWs (n = 17), and HIV− lower-risk women (n = 21). Cell markers were assessed by in situ staining and by quantitative PCR. HIV RNA expression in tissue was analyzed by in situ hybridization, and viral shedding was assessed by quantitative PCR. The HIV+FSW group had a higher amount of total cells and CD8+, CD3+, and HLA-DR+ cells compared with the HIV−FSW group and HIV− lower-risk women. The majority of CD8+ cells were CD3+ T cells, and the numbers of CD8+ cells correlated significantly with plasma and cervical viral load. HIV RNA expression in situ was found in 4 of the 20 HIV+FSW women but did not correlate with cervical or plasma viral load. Thus, the HIV+ women displayed high numbers of CD8+, CD3+, and HLA-DR+ cells, as well as a limited number of HIV RNA+ cells, in their ectocervical mucosa; hence, this localization cannot be neglected as a potential viral reservoir. The elevated levels of CD8+ T cells may play a role in the immunopathogenesis of HIV in the female genital tract

    Evaluation of a Quantitative Real-Time PCR Assay to Measure HIV-Specific Mucosal CD8+ T Cell Responses in the Cervix

    Get PDF
    Several candidate HIV vaccines aim to induce virus-specific cellular immunity particularly in the genital tract, typically the initial site of HIV acquisition. However, standardized and sensitive methods for evaluating HIV-specific immune responses at the genital level are lacking. Therefore we evaluated real-time quantitative PCR (qPCR) as a potential platform to measure these responses. β-Actin and GAPDH were identified as the most stable housekeeping reference genes in peripheral blood mononuclear cells (PBMCs) and cervical mononuclear cells (CMCs) respectively and were used for normalizing transcript mRNA expression. HIV-specific cellular T cell immune responses to a pool of optimized CD8+ HIV epitopes (HIV epitope pool) and Staphylococcal enterotoxin B (SEB) superantigen control were assayed in HIV infected PBMC by qPCR, with parallel assessment of cytokine protein production. Peak HIV-specific mRNA expression of IFNγ, IL-2 and TNFα occurred after 3, 5 and 12 hours respectively. PBMCs were titrated to cervical appropriate cell numbers to determine minimum required assay input cell numbers; qPCR retained sensitivity with input of at least 2.5×104 PBMCs. This optimized qPCR assay was then used to assess HIV-specific cellular T cell responses in cytobrush-derived cervical T cells from HIV positive individuals. SEB induced IFNγ mRNA transcription was detected in CMCs and correlated positively with IFNγ protein production. However, qPCR was unable to detect HIV-induced cytokine mRNA production in the cervix of HIV-infected women despite robust detection of gene induction in PBMCs. In conclusion, although qPCR can be used to measure ex vivo cellular immune responses to HIV in blood, HIV-specific responses in the cervix may fall below the threshold of qPCR detection. Nonetheless, this platform may have a potential role in measuring mitogen-induced immune responses in the genital tract

    The role of G protein gene GNB3 C825T Polymorphism in HIV-1 acquisition, progression and immune activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>GNB3 C825T </it>polymorphism is associated with increased G protein-mediated signal transduction, SDF-1α-mediated lymphocyte chemotaxis, accelerated HIV-1 progression, and altered responses to antiretroviral therapy among Caucasian subjects. The <it>GNB3 </it>825T allele is highly prevalent in African populations, and as such any impact on HIV-1 acquisition or progression rates could have a dramatic impact. This study examines the association of the 825T polymorphism with HIV-1 acquisition, disease progression and immune activation in two African cohorts. <it>GNB3 </it>825 genotyping was performed for enrolees in both a commercial sex worker cohort and a perinatal HIV transmission (PHT) cohort in Nairobi, Kenya. <it>Ex vivo </it>immune activation was quantified by flow cytometry, and plasma chemokine levels were assessed by cytokine bead array.</p> <p>Results</p> <p><it>GNB3 </it>genotype was not associated with sexual or vertical HIV-1 acquisition within these cohorts. Within the Pumwani cohort, <it>GNB3 </it>genotype did not affect HIV-1 disease progression among seroconverters or among HIV-1-positive individuals after adjustment for baseline CD4 count. Maternal CD4 decline and viral load increase in the PHT cohort did not differ between genotypes. Multi-parametric flow cytometry assessment of T cell activation (CD69, HLA-DR, CD38) and Treg frequency (CD25<sup>+</sup>FOXP3<sup>+</sup>) found no differences between genotype groups. Plasma SDF-1α, MIP-1β and TRAIL levels quantified by cytokine bead array were also similar between groups.</p> <p>Conclusions</p> <p>In contrast to previous reports, we were unable to provide evidence to suggest that the <it>GNB3 C825T </it>polymorphism affects HIV-1 acquisition or disease progression within African populations. <it>Ex vivo </it>immune activation and plasma chemokine levels were similarly unaffected by <it>GNB3 </it>genotype in both HIV-1-negative and HIV-1-positive individuals. The paucity of studies investigating the impact of <it>GNB3 </it>polymorphism among African populations and the lack of mechanistic studies make it difficult to assess the true biological significance of this polymorphism in HIV-1 infection.</p

    The velocity distribution of nearby stars from Hipparcos data I. The significance of the moving groups

    Full text link
    We present a three-dimensional reconstruction of the velocity distribution of nearby stars (<~ 100 pc) using a maximum likelihood density estimation technique applied to the two-dimensional tangential velocities of stars. The underlying distribution is modeled as a mixture of Gaussian components. The algorithm reconstructs the error-deconvolved distribution function, even when the individual stars have unique error and missing-data properties. We apply this technique to the tangential velocity measurements from a kinematically unbiased sample of 11,865 main sequence stars observed by the Hipparcos satellite. We explore various methods for validating the complexity of the resulting velocity distribution function, including criteria based on Bayesian model selection and how accurately our reconstruction predicts the radial velocities of a sample of stars from the Geneva-Copenhagen survey (GCS). Using this very conservative external validation test based on the GCS, we find that there is little evidence for structure in the distribution function beyond the moving groups established prior to the Hipparcos mission. This is in sharp contrast with internal tests performed here and in previous analyses, which point consistently to maximal structure in the velocity distribution. We quantify the information content of the radial velocity measurements and find that the mean amount of new information gained from a radial velocity measurement of a single star is significant. This argues for complementary radial velocity surveys to upcoming astrometric surveys
    corecore