344 research outputs found

    Observations of QSO J2233-606 in the Southern Hubble Deep Field

    Get PDF
    The Hubble Deep Field South (HDF-S) HST observations are expected to begin in October 1998. We present a composite spectrum of the QSO in the HDF-S field covering UV/optical/near IR wavelengths, obtained by combining data from the ANU 2.3m Telescope with STIS on the HST. This intermediate resolution spectrum covers the range 1600-10000A and allows us to derive some basic information on the intervening absorption systems which will be important in planning future higher resolution studies of this QSO.Comment: 9 pages and 2 figures, submitted to ApJ

    A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans

    Get PDF
    Inappropriate or excessive activation of ionotropic receptors can have dramatic consequences for neuronal function and, in many instances, leads to cell death. In Caenorhabditis elegans, nicotinic acetylcholine receptor (nAChR) subunits are highly expressed in a neural circuit that controls movement. Here, we show that heteromeric nAChRs containing the acr-2 subunit are diffusely localized in the processes of excitatory motor neurons and act to modulate motor neuron activity. Excessive signaling through these receptors leads to cell-autonomous degeneration of cholinergic motor neurons and paralysis. C. elegans double mutants lacking calreticulin and calnexin-two genes previously implicated in the cellular events leading to necrotic-like cell death (Xu et al. 2001)-are resistant to nAChR-mediated toxicity and possess normal numbers of motor neuron cell bodies. Nonetheless, excess nAChR activation leads to progressive destabilization of the motor neuron processes and, ultimately, paralysis in these animals. Our results provide new evidence that chronic activation of ionotropic receptors can have devastating degenerative effects in neurons and reveal that ion channel-mediated toxicity may have distinct consequences in neuronal cell bodies and processes

    The evolution of faint AGN between z~1 and z~5 from the COMBO-17 survey

    Full text link
    We present a determination of the optical/UV AGN luminosity function and its evolution, based on a large sample of faint (R<24) QSOs identified in the COMBO-17 survey. Using multi-band photometry in 17 filters within 350nm < lambda_obs < 930nm, we could simultaneously determine photometric redshifts with an accuracy of sigma_z<0.03 and obtain spectral energy distributions. The redshift range covered by the sample is 1.2<z<4.8, which implies that even at z~3, the sample reaches below luminosities corresponding to M_B = -23, conventionally employed to distinguish between Seyfert galaxies and quasars. We clearly detect a broad plateau-like maximum of quasar activity around z~2 and map out the smooth turnover between z~1 and z~4. The shape of the LF is characterised by some mild curvature, but no sharp `break' is present within the range of luminosities covered. Using only the COMBO-17 data, the evolving LF can be adequately described by either a pure density evolution (PDE) or a pure luminosity evolution (PLE) model. However, the absence of a strong L*-like feature in the shape of the LF inhibits a robust distinction between these modes. We present a robust estimate for the integrated UV luminosity generation by AGN as a function of redshift. We find that the LF continues to rise even at the lowest luminosities probed by our survey, but that the slope is sufficiently shallow that the contribution of low-luminosity AGN to the UV luminosity density is negligible. Although our sample reaches much fainter flux levels than previous data sets, our results on space densities and LF slopes are completely consistent with extrapolations from recent major surveys such as SDSS and 2QZ.Comment: 17 pages, 14 figures, Astronomy & Astrophysics, in print, revised versio

    Requirement of JNK1 for endothelial cell injury in atherogenesis

    Get PDF
    AbstractObjectiveThe c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice.Methods and resultsTo assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered.ConclusionWe conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation

    A Uniform Analysis of the Ly-alpha forest at z = 0 - 5: II. Measuring the mean intensity of the extragalactic ionizing background using the proximity effect

    Get PDF
    A homogeneous sample of 99 moderate resolution QSO spectra at z > 1.7 were presented in Paper I, including 39 previously unpublished spectra from the Multiple Mirror Telescope. The statistics of the Lyman alpha forest were discussed. In this analysis, we demonstrate that a proximity effect is present in the data, ie. there exists a significant (5.5σ\sigma) deficit of lines at zabs≈zemz_{abs} \approx z_{em}. Within 1.5 h−1h^{-1} Mpc of the QSO emission redshift, the significance does depend on QSO luminosity, in accordance with the theory that this effect is caused by enhanced ionization of hydrogen in the vicinity of the QSO from UV photons from the QSO itself. The photoionization model of Bajtlik, Duncan, and Ostriker (1988) permits an estimate of the mean intensity of the extragalactic background radiation at the Lyman limit. We compare the results of this standard analysis with those obtained using a maximum likelihood technique. The best fit value for J(Îœ0)J(\nu_{0}) is 7.0−4.4+3.4^{+3.4}_{-4.4} x 10−22^{-22} ergs/s/cm2^{2}/Hz/sr, over the redshift range 1.7 < z < 3.8, using QSO redshifts based on narrow emission lines. The best fit value for the HI ionization rate is 1.9−1.0+1.2^{+1.2}_{-1.0} x 10−12^{-12} s−1^{-1}, in good agreement with models of the background which incorporate QSOs only. This large absorption line sample and these techniques for measuring the background and understanding the systematics involved allow us to place what we believe are are the firmest limits on the background at these redshifts.Comment: revised figures 13 and 14, and other minor corrections, 42 Latex pages, 23 encapsulated Postscript figures, uses emulateapj.sty, To appear in the Sept. 2000 ApJ

    The BeppoSAX view of the hard X-ray background

    Get PDF
    First results on a medium-deep X-ray survey in the "new" 5-10 keV band carried out with the MECS detectors onboard BeppoSAX are presented. The High Energy Llarge Area Survey (HELLAS) is aimed to directly explore a band where the energy density of the X-ray background is more than twice than that in the soft (0.5-2.0 keV) band. The optical identification follow-up of the first ten HELLAS hard X-ray sources indicate that Active Galactic Nuclei are the dominant population at 5-10 keV fluxes of the order of 10e-13 cgs. We discuss the implications of these findings for the AGN synthesis models for the XRB.Comment: 6 pages, 4 figures, uses psfig.sty. Accepted for publication in Advances in Space Research, Proceedings of the 32nd Scientific Assembly of COSPA

    Constraints on the faint end of the quasar luminosity function at z~5 in the COSMOS field

    Get PDF
    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 < z < 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z~5, that are ~ 3 mag fainter than the SDSS quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z~5 while a low-luminosity type-2 quasar at z~5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z~5, we calculated the 1sigma confidence upper limits of the space density of type-1 quasars. As a result, the 1sigma confidence upper limits on the quasar space density are Phi< 1.33*10^{-7} Mpc^{-3} mag^{-1} for -24.52 < M_{1450} < -23.52 and Phi< 2.88*10^{-7} Mpc^{-3} mag^{-1} for -23.52 < M_{1450} < -22.52. The inferred 1sigma confidence upper limits of the space density are then used to provide constrains on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z~5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M_{1450} ~ -23), being similar to the trend found for quasars with high luminosity (M_{1450}<-26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.Comment: 8 pages, 9 figures, 1 table, accepted for publication in Ap

    The quasar M_bh - M_host relation through Cosmic Time I - Dataset and black hole masses

    Full text link
    We study the M_bh - M_host relation as a function of Cosmic Time in a sample of 96 quasars from z=3 to the present epoch. In this paper we describe the sample, the data sources and the new spectroscopic observations. We then illustrate how we derive M_bh from single-epoch spectra, pointing out the uncertainties in the procedure. In a companion paper, we address the dependence of the ratio between the black hole mass and the host galaxy luminosity and mass on Cosmic Time.Comment: 16 pages, 6 figures, 5 tables. Accepted for publication in MNRA

    The Spectral Energy Distributions of Red 2MASS AGN

    Full text link
    We present infrared (IR) to X-ray spectral energy distributions (SEDs) for 44 red AGN selected from the 2MASS survey on the basis of their red J-KS_S color (>2 mag) and later observed by Chandra. In comparison with optically-, radio-, and X-ray selected AGN, their median SEDs are red in the optical and near-IR with little/no blue bump. It thus seems that near-IR color selection isolates the reddest subset of AGN that can be classified optically. The shape of the SEDs is generally consistent with modest absorption by gas (in the X-ray) and dust (in the optical-IR). The levels of obscuration, estimated from X-rays, far-IR and our detailed optical/near-IR color modeling are all consistent implying N_H < few*10^{22} cm^{-2}. We present SED models that show how the AGN optical/near-IR colors change due to differing amounts of reddening, AGN to host galaxy ratio, redshift and scattered light emission and apply them to the sources in the sample. We find that the 2MASS AGN optical color, B-R, and to a lesser extent the near-IR color, J-KS_S, are strongly affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The obscuration/inclination of the AGN allows us to see weaker emission components which are generally swamped by the AGN.Comment: 52 pages, 17 figures, accepted for publication in Ap

    Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System

    Full text link
    We present an empirical investigation of the colors of quasars in the Sloan Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625 quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide stripe centered on the Celestial Equator covering ∌529\sim529 square degrees. Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS spectroscopic commissioning. New SDSS quasars represent an increase of over 200% in the number of known quasars in this area of the sky. The ensemble average of the observed colors of quasars in the SDSS passbands are well represented by a power-law continuum with αΜ=−0.5\alpha_{\nu} = -0.5 (fΜ∝Μαf_{\nu} \propto \nu^{\alpha}). However, the contributions of the 3000A˚3000 {\rm \AA} bump and other strong emission lines have a significant effect upon the colors. The color-redshift relation exhibits considerable structure, which may be of use in determining photometric redshifts for quasars. The range of colors can be accounted for by a range in the optical spectral index with a distribution αΜ=−0.5±0.65\alpha_{\nu}=-0.5\pm0.65 (95% confidence), but there is a red tail in the distribution. This tail may be a sign of internal reddening. Finally, we show that there is a continuum of properties between quasars and Seyfert galaxies and we test the validity of the traditional division between the two classes of AGN.Comment: 66 pages, 15 figures (3 color), accepted by A
    • 

    corecore