10 research outputs found

    A 12-Mb Complete Coverage BAC Contig Map in Human Chromosome 16p13.1–p11.2

    No full text
    We have constructed a complete coverage BAC contig map that spans a 12-Mb genomic segment in the human chromosome 16p13.1–p11.2 region. The map consists of 68 previously mapped STSs and 289 BAC clones, 51 of which—corresponding to a total of 7.721 Mb of genomic DNA—have been sequenced, and provides a high resolution physical map of the region. Contigs were initially built based mainly on the analysis of STS contents and restriction fingerprint patterns of the clones. To close the gaps, probes derived from BAC clone ends were used to screen deeper BAC libraries. Clone end sequence data obtained from chromosome 16-specific BACs, as well as from public databases, were used for the identification of BACs that overlap with fully sequenced BACs by means of sequence match. This approach allowed precise alignment of clone overlaps in addition to restriction fingerprint comparison. A freehand contig drawing software tool was developed and used to manage the map data graphically and generate a real scale physical map. The map we present here is ∼3.5 × deep and provides a minimal tiling path that covers the region in an array of contigous, overlapping BACs

    The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern

    Get PDF
    The extent and patterns of linkage disequilibrium (LD) determine the feasibility of association studies to map genes that underlie complex traits. Here we present a comparison of the patterns of LD across four major human populations (African-American, Caucasian, Chinese, and Japanese) with a high-resolution single-nucleotide polymorphism (SNP) map covering almost the entire length of chromosomes 6, 21, and 22. We constructed metric LD maps formulated such that the units measure the extent of useful LD for association mapping. LD reaches almost twice as far in chromosome 6 as in chromosomes 21 or 22, in agreement with their differences in recombination rates. By all measures used, out-of-Africa populations showed over a third more LD than African-Americans, highlighting the role of the population's demography in shaping the patterns of LD. Despite those differences, the long-range contour of the LD maps is remarkably similar across the four populations, presumably reflecting common localization of recombination hot spots. Our results have practical implications for the rational design and selection of SNPs for disease association studies

    The Genome Sequence of the Malaria Mosquito Anopheles gambiae

    No full text
    corecore