5,347 research outputs found

    International Arbitration Under the UNCITRAL Arbitration Rules: A Contractual Provision for Improvement

    Get PDF

    Room temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: An ab-initio molecular dynamics perspective

    Full text link
    The high efficiency of lead organo-metal-halide perovskite solar cells has raised many questions about the role of the methylammonium (MA) molecules in the Pb-I framework. Experiments indicate that the MA molecules are able to 'freely' spin around at room temperature even though they carry an intrinsic dipole moment. We have performed large supercell (2592 atoms) finite temperature ab-initio molecular dynamics calculations to study the correlation between the molecules in the framework. An underlying long range anti-ferroelectric ordering of the molecular dipoles is observed. The dynamical correlation between neighboring molecules shows a maximum around room temperature in the mid-temperature phase. In this phase, the rotations are slow enough to (partially) couple to neighbors via the Pb-I cage. This results in a collective motion of neighboring molecules in which the cage acts as the mediator. At lower and higher temperatures the motions are less correlated

    Relativistic GWGW+BSE study of the optical properties of Ruddlesden-Popper iridates

    Full text link
    We study the optical properties of the Ruddlesden-Popper series of iridates Srn+1_{n+1}Irn_nO3n+1_{3n+1} (nn=1, 2 and \infty) by solving the Bethe-Salpeter equation (BSE), where the quasiparticle (QP) energies and screened interactions WW are obtained by the GWGW approximation including spin-orbit coupling. The computed optical conductivity spectra show strong excitonic effects and reproduce very well the experimentally observed double-peak structure, in particular for the spin-orbital Mott insulators Sr2_2IrO4_4 and Sr3_3Ir2_2O7_7. However, GWGW does not account well for the correlated metallic state of SrIrO3_3 owing to a much too small band renormalization, and this affects the overall quality of the optical conductivity. Our analysis describes well the progressive redshift of the main optical peaks as a function of dimensionality (nn), which is correlated with the gradual decrease of the electronic correlation (quantified by the constrained random phase approximation) towards the metallic n=n=\infty limit. We have also assessed the quality of a computationally cheaper BSE approach that is based on a model dielectric function and conducted on top of DFT+UU one-electron energies. Unfortunately, this model BSE approach does not accurately reproduce the outcome of the full GWGW+BSE method and leads to larger deviations to the measured spectra.Comment: 13 pages, 8 figure

    The random phase approximation applied to ice

    Full text link
    Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih_h observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes remain sizable. Here we assess the random phase approximation (RPA) for the correlation energy and compare our results to experimental data as well as diffusion Monte Carlo data for ice. The RPA yields a very balanced description for all considered phases, approaching the accuracy of diffusion Monte Carlo in relative energies and volumes. This opens a route towards a concise description of molecular water phases on surfaces and in cavities

    Anisotropic Magnetic Couplings and Structure-Driven Canted to Collinear Transitions in Spin-orbit Coupled Sr2IrO4

    Full text link
    We put forward a scheme to study the anisotropic magnetic couplings in Sr2IrO4 by mapping fully relativistic constrained noncollinear density functional theory including an on-site Hubbard U correction onto a general spin model Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the interplay between structural distortions and the competition between isotropic exchange and DM interactions. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation

    Modified Hemagglutination Tests for COVID-19 Serology in Resource-Poor Settings: Ready for Prime-Time?

    Get PDF
    During the ongoing COVID-19 pandemic, serology has suffered several manufacturing and budget bottlenecks. Kode technology exposes exogenous antigens on the surface of cells; in the case of red blood cells, modified cells are called kodecytes, making antibody\u2013antigen reactions detectable by the old-fashioned hemagglutination test. In this commentary, we review evidence supporting the utility of SARS-CoV-2 Spike kodecytes for clinical diagnostic purposes and serosurveys in resource-poor settings

    Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods

    Full text link
    The magnetic properties of the transition metal monoxides MnO and NiO are investigated at equilibrium and under pressure via several advanced first-principles methods coupled with Heisenberg Hamiltonian MonteCarlo. The comparative first-principles analysis involves two promising beyond-local density functionals approaches, namely the hybrid density functional theory and the recently developed variational pseudo-self-interaction correction method, implemented with both plane-wave and atomic-orbital basis sets. The advanced functionals deliver a very satisfying rendition, curing the main drawbacks of the local functionals and improving over many other previous theoretical predictions. Furthermore, and most importantly, they convincingly demonstrate a degree of internal consistency, despite differences emerging due to methodological details (e.g. plane waves vs. atomic orbitals

    Exceptionally strong magnetism in 4d perovskites RTcO3 (R=Ca,Sr,Ba)

    Full text link
    The evolution of the magnetic ordering temperature of the 4d3 perovskites RTcO3 (R=Ca,Sr,Ba) and its relation with its electronic and structural properties has been studied by means of hybrid density functional theory and Monte Carlo simulations. When compared to the most widely studied 3d perovskites the large spatial extent of the 4d shells and their relatively strong hybridization with oxygen weaken the tendency to form Jahn-Teller like orbital ordering. This strengthens the superexchange interaction. The resulting insulating G-type antiferromagnetic ground state is characterized by large superexchange coupling constants (26-35 meV) and Neel temperatures (750-1200 K). These monotonically increase as a function of the R ionic radius due to the progressive enhancement of the volume and the associated decrease of the cooperative rotation of the TcO6 octahedra.Comment: 4 pages, 3 figure

    Sulfoglycolipids analogues as new molecules for tumor treatment

    Get PDF
    The sulfoglycolipids sulfoquinovosylacylglycerols(SQAG) are abundant sulfur-containing glycerolipids that are associated with photosynthetic organisms especially with a large number of marine algae. Their main structural feature is the anionic head group constituent sulfoquinovose, a derivative of glucose in which the 6-hydroxyl is replaced by a sulfonate group, \uf061-linked to the sn-3 position of a diacylglycerol1. Recently reported biological activities of SQAGs, including inhibitory effects on HIV-reverse transcriptase, and mammalian DNA polymerase, proliferation of some cancer cell lines, angiogenesis (especially when coupled with tumor radiotherapy), and apoptosis induction, make these compounds very attractive for their potential in cancer therapy. Also, extractive SQAG mixtures are known to inhibit in vitro TPA induced tumor promotion stage. To obtain new active compounds for cancer therapy by structural modification of natural SQAGs, SQAG analogues have been synthesized in which the sulfoquinovose moiety is linked to the 2 position of glycerol carrying acyl chains of different length. Similar compounds in fact, with a 6\u2019-hydroxyl instead of a 6\u2019-sulfonate (namely some glycoglycerolipid analogues), are known to be active as anti-tumor-promoters in TPA promoted carcinogenesis in vitro and in vivo experiments. A synthetic strategy has been used to selectively insert the proper chemical functionalities (i.e. sulfonate and acyl chains) at the desired positions of the previously prepared glucosylglycerol skeleton to obtain the target compounds. Biological evaluation of anti-tumor activities will be performed including the study of their chemopreventing potential
    corecore