630 research outputs found

    3He(α,γ)7Be{^3{\rm He}}(\alpha,\gamma){^7{\rm Be}} and 3H(α,γ)7Li{^3{\rm H}}(\alpha,\gamma){^7{\rm Li}} astrophysical SS factors from the no-core shell model with continuum

    Get PDF
    The 3He(α,γ)7Be{^3{\rm He}}(\alpha,\gamma){^7{\rm Be}} and 3H(α,γ)7Li{^3{\rm H}}(\alpha,\gamma){^7{\rm Li}} astrophysical SS factors are calculated within the no-core shell model with continuum using a renormalized chiral nucleon-nucleon interaction. The 3He(α,γ)7Be{^3{\rm He}}(\alpha,\gamma){^7{\rm Be}} astrophysical SS factors agree reasonably well with the experimental data while the 3H(α,γ)7Li{^3{\rm H}}(\alpha,\gamma){^7{\rm Li}} ones are overestimated. The seven-nucleon bound and resonance states and the α+3He/3H\alpha+{^3{\rm He}}/{^3{\rm H}} elastic scattering are also studied and compared with experiment. The low-lying resonance properties are rather well reproduced by our approach. At low energies, the ss-wave phase shift, which is non-resonant, is overestimated.Comment: 8 pages, submitted to Phys. Lett.

    Structural communication between the GTPase Sec4p and its activator Sec2p: Determinants of GEF activity and early deformations to nucleotide release

    Get PDF
    Ras GTPases are molecular switches that cycle between OFF and ON states depending on the bound nucleotide (i.e. GDP-bound and GTP-bound, respectively).The Rab GTPase, Sec4p, plays regulatory roles in multiple steps of intracellular vesicle trafficking. Nucleotide release is catalyzed by the Guanine Nucleotide Exchange Factor (GEF) Sec2p.Here, the integration of structural information with molecular dynamics (MD) simulations addressed a number of questions concerning the intrinsic and stimulated dynamics of Sec2p and Sec4p as well as the chain of structural deformations leading to GEF-assisted activation of the Rab GTPase.Sec2p holds an intrinsic ability to adopt the conformation found in the crystallographic complexes with Sec4p, thus suggesting that the latter selects and shifts the conformational equilibrium towards a pre-existing bound-like conformation of Sec2p.The anchoring of Sec4p to a suitable conformation of Sec2p favors the Sec2p-assisted pulling on itself of the a1/switch 1 (SWI) loop and of SWI, which loose any contact with GDP. Those deformations of Sec4p would occur earlier. Formation of the final Sec2p-Sec4p hydrophobic interface, accomplishes later. Disruption of the nucleotide cage would cause firstly loss of interactions with the guanine ring and sec-ondly loss of interactions with the phosphates.The ease in sampling the energy landscape and adopting a bound-like conformation likely favors the catalyzing ability of GEFs for Ras GTPases.(c) 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/)

    Serum Calprotectin: An Antimicrobial Peptide as a New Marker For the Diagnosis of Sepsis in Very Low Birth Weight Newborns

    Get PDF
    To determine the diagnostic utility of serum calprotectin, a mediator of innate immune response against infections, we performed a multicenter study involving newborns with a birth weight <1500 g and a postnatal age >72 hours of life. The diagnostic accuracy of serum calprotectin was compared with that of the most commonly used markers of neonatal sepsis (white blood cell count, immature-to-total-neutrophil ratio, platelet count, and C-reactive protein). We found that the serum calprotectin concentration was significantly higher (P < .001) in 62 newborns with confirmed sepsis (3.1 ± 1.0  μg/mL) than in either 29 noninfected subjects (1.1 ± 0.3 μg/ml) or 110 healthy controls (0.91 ± 0.58 μg/ml). The diagnostic accuracy of serum calprotectin was greater (sensitivity 89%, specificity 96%) than that of the traditional markers of sepsis. In conclusion, serum calprotectin is an accurate marker of sepsis in very low birth weight newborns

    UML design and AWL programming for reconfigurable control software development of a robotic manipulator

    Get PDF
    The goal of the presented research is to face the topic of reconfigurable control software development in a concrete fashion, i.e., by presenting a control software system development approach which has been used for a specific, although easy to be generalized, robotized manufacturing cell component. In particular, a methodology for the control software development of a planar robot (2-degrees of freedom) is presented, from the conceptual design to the actual implementation. The methodology suggests UAL and object-oriented modeling and programming techniques for the design phase, while AWL programming language run by a PLC for the implementation phase. The analysis has been conducted considering the internal and external requirements of the manufacturing system which comprises the. robot, mostly driven by the contemporary industrial need of reconfigurable control systems, critical key to succeed in the new era of mass customization

    Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases

    Get PDF
    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEgamma binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions

    Fuzzy Control Strategy for Cooperative Non-holonomic Motion of Cybercars with Passengers Vibration Analysis

    Get PDF
    The cybercars are electric road wheeled non-holonomic vehicles with fully automated driving capabilities. They contribute to sustainable mobility and are employed as passenger vehicles. Non-holonomic mechanics describes the motion of the cybercar constrained by non-integrable constraints, i.e. constraints on the system velocities that do not arise from constraints on the configuration alone. First of all there are thus with dynamic nonholonomic constraints, i.e. constraints preserved by the basic Euler-Lagrange equations (Bloch, 2000; Melluso, 2007; Raimondi & Melluso, 2006-a). Of course, these constraints are not externally imposed on the system but rather are consequences of the equations of motion of the cybercar, and so it sometimes convenient to treat them as conservation laws rather than constraints per se. On the other hand, kinematic non-holonomic constraints are those imposed by kinematics, such as rolling constraints. The goal of the motion control of cybercars is to allow the automated vehicle to go from one terminal to another while staying on a defined trajectory and maintaining a set of performance criteria in terms of speeds, accelerations and jerks. There are many results concerning the issue of kinematic motion control for single car (Fierro & Lewis, 1997). The main idea behind the kinematic control algorithms is to define the velocity control inputs which stabilize the closed loop system. These works are based only on the steering kinematics and assume that there exists perfect velocity tracking, i.e. the control signal instantaneously affects the car velocities and this is not true. Other control researchers have target the problems of time varying trajectories tracking, regulating a single car to a desired position/orientation and incorporating the effects of the dynamical model to enhance the overall performance of the closed loop system. The works above are based on a backstepping approach, where the merging of kinematic and dynamic effects leads to the control torques applied to the motors of the wheels. A Fuzzy dynamic closed loop motion control for a single non-holonomic car based on backstepping approach and oriented to stability analysis of the motion errors has been developed by Raimondi & Melluso (2005). In Raimondi & Melluso (2006-b) and Raimondi & Melluso (2007-a) adaptive fuzzy motion control systems for single non-holonomic automated vehicles with unknown dynamic and kinematic parameters and Kalman's filter to localize the car have been presented. With regards to the problems of cooperative control of multiple cybercars, a number of techniques have been developed for omni-directiona

    Circulating Tumor Cells Identify Patients with Super-High-Risk Non-Muscle-Invasive Bladder Cancer: Updated Outcome Analysis of a Prospective Single-Center Trial

    Get PDF
    Clinical behavior of non-muscle-invasive bladder cancer (NMIBC) is largely unpredictable, and even patients treated according to European Association of Urology recommendations have a heterogeneous prognosis. High-grade T1 (HGT1) bladder cancer is the highest-risk subtype of NMIBC, with an almost 40% rate of recurrence and 20% of progression at 5 years. Nomograms predicting risk of recurrence, progression, and cancer-specific survival (CSS) are not available specifically within HGT1 bladder cancer, and the identification of robust prognostic biomarkers to better guide therapeutic strategies in this subgroup of patients is of paramount importance. Strategies to identify putative biomarkers in liquid biopsies from blood and urine collected from patients with bladder cancer have been intensively studied in the last few years
    corecore