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with continuum using a renormalized chiral nucleon–nucleon interaction. The 3He(α, γ )7Be astrophysical 
S factors agree reasonably well with the experimental data while the 3H(α, γ )7Li ones are overestimated. 
The seven-nucleon bound and resonance states and the α + 3He/3H elastic scattering are also studied 
and compared with experiment. The low-lying resonance properties are rather well reproduced by our 
approach. At low energies, the s-wave phase shift, which is non-resonant, is overestimated.
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1. Introduction

The 3He(α, γ )7Be and 3H(α, γ )7Li radiative-capture processes 
hold great astrophysical significance. Their reaction rates for col-
lision energies between ∼20 and 500 keV in the center-of-mass 
(c.m.) frame are essential to calculate the primordial 7Li abundance 
in the universe [1–3]. In addition, standard solar model predic-
tions for the fraction of pp-chain branches resulting in 7Be versus 
8B neutrinos depend critically on the 3He(α, γ )7Be astrophysical S
factor at about 20 keV c.m. energy [4,5]. Because of the Coulomb 
repulsion between the fusing nuclei, these capture cross sections 
are strongly suppressed at such low energies and thus hard to 
measure directly in a laboratory.

Concerning the 3He(α, γ )7Be radiative capture, experiments 
performed by several groups in the last decade have led to quite 
accurate cross-section determinations for collision energies be-
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tween about 90 keV and 3.1 MeV in the c.m. frame [6–13]. How-
ever, theoretical models or extrapolations are still needed to pro-
vide the capture cross section at solar energies [14]. In contrast, 
experimental data are less precise and also much less extensive for 
the 3H(α, γ )7Li radiative capture. The most recent experiment was 
performed twenty years ago resulting in measurements at collision 
energies between about 50 keV and 1.2 MeV in the c.m. frame [15].

Theoretically, these radiative captures have also generated much 
interest: from the development of pure external-capture models in 
the early 60’s [16] to the microscopic approaches from the late 80’s 
up to now [17–19,3,20] (see Ref. [5] for a short review). However, 
no parameter-free approach is able to simultaneously reproduce 
the latest experimental 3He(α, γ )7Be and 3H(α, γ )7Li astrophys-
ical S factors. To possibly fill this gap, an ab initio approach, re-
lying on a realistic inter-nucleon interaction, is highly desirable. 
The ab initio no-core shell model with continuum (NCSMC) [21,
22] has been successful in the simultaneous description of bound 
and scattering states associated with realistic Hamiltonians [23,24]. 
This approach can thus be naturally applied to the description of 
radiative-capture reactions, which involve both scattering (in the 
initial channels) and bound states (in the final channels).

In this letter, we present the study of the 3He(α, γ )7Be
and 3H(α, γ )7Li radiative-capture reactions with the NCSMC ap-
proach [21,22], using a renormalized chiral nucleon–nucleon (N N) 
interaction. This is the first NCSMC study where the lightest col-
by Elsevier B.V. This is an open access article under the CC BY license 
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liding nucleus has three nucleons and the first application of the 
NCSMC to a radiative capture. We outline the NCSMC formalism 
in Sec. 2 and apply the NCSMC approach to the study of seven-
nucleon systems in Sec. 3. First, properties of 7Be and 7Li bound 
states and resonance states are evaluated and compared with the 
experimental data. Then, the α + 3He and α + 3H scattering 
states are studied. Elastic cross sections, elastic phase shifts, and 
scattering lengths are computed and compared with experimen-
tal data or values obtained by other models. Finally, from the 
7Be and 7Li bound-state wave functions and the α + 3He and 
α + 3H scattering wave functions, we evaluate the 3He(α, γ )7Be
and 3H(α, γ )7Li radiative-capture cross sections.

2. Formalism

The present study of the 7Be and 7Li nuclei, of the α + 3He and 
α + 3H elastic scattering, and of the 3He(α, γ )7Be and 3H(α, γ )7Li
radiative-capture reactions is based on the solutions of the micro-
scopic Schrödinger equation

H|� Jπ T 〉 =
⎡
⎣ 7∑

i=1

ti − Tc.m. +
7∑

i< j=1

vij

⎤
⎦ |� Jπ T 〉 = E|� Jπ T 〉, (1)

at different energies for different values of angular momentum J , 
parity π , and isospin T . The quantum numbers associated with 
the projections of the angular momentum and of the isospin are 
omitted for simplifying the notations. Here H is the translation-
invariant microscopic Hamiltonian, ti is the kinetic energy of nu-
cleon i, Tc.m. is the c.m. kinetic energy, vij is the potential between 
nucleons i and j, E is the total energy in the c.m. frame, and 
|� Jπ T 〉 is a partial wave function with quantum numbers Jπ T . 
The N N potential vij , which is specified in the next section, is re-
alistic, in the sense that it reproduces the experimental deuteron 
energy and N N phase shifts. For computational reasons, no three-
body forces are considered in the present work.

For the sake of brevity, in the rest of this section, the formal-
ism is presented only for the 7Be/α + 3He system. The treatment 
of the 7Li/α + 3H system is analogous. In the NCSMC approach, 
the colliding nuclei, α and 3He, are described by square-integrable 
eigenstates of the 4He and 3He systems obtained within the no-
core shell model (NCSM) [25,26] by diagonalizing a large matrix. 
These NCSM eigenstates are linear combinations of translation-
invariant and fully-antisymmetric states of harmonic oscillator 
(HO) wave functions with frequency � and up to Nmax HO quanta 
above the lowest energy configuration. The compound system, the 
7Be bound and resonance states and the α + 3He scattering states, 
are described by a combination of seven-body NCSM eigenstates, 
denoted by |7λ Jπ T 〉 with λ the energy label, and 4He + 3He 
cluster states, denoted by |� Jπ T

νr 〉, and built from the NCSM eigen-
states of 4He and 3He by means of the resonating-group method 
(RGM) [27,28]. The latter cluster states are explicitly given by

|� Jπ T
νr 〉 =

[[
|4Heλ4 Jπ4

4 T4〉|3Heλ3 Jπ3
3 T3〉

](sT )

Y
(r̂43)

]( Jπ T )

× δ(r − r43)

rr43
,

(2)

where |4Heλ4 Jπ4
4 T4〉 is a NCSM eigenstate of 4He with energy la-

bel λ4, total angular momentum J4, parity π4, and isospin T4, 
|3Heλ3 Jπ3

3 T3〉 is an analogously defined NCSM eigenstate of 3He, 
s is the channel spin, r43 is the relative coordinate between the 
centers of mass of 4He and 3He, 
 is the relative orbital angu-
lar momentum between the clusters, and ν is a collective in-
dex for {λ4, J4, π4, T4, λ3, J3, π3, T3, s, 
}. These cluster states are 
translation-invariant. Full antisymmetrization is obtained by ap-
plying an operator Â43 that accounts for exchanges between the 
nucleons belonging to 4He and those belonging to 3He. The NCSMC
partial wave function is thus expanded as

|� Jπ T 〉 =
∑
λ

c Jπ T
λ |7λ Jπ T 〉

+
∑
ν

∫
drr2 γ

Jπ T
ν (r)

r
Â43|� Jπ T

νr 〉,
(3)

where the coefficients c Jπ T
λ and functions γ Jπ T

ν are unknown dis-
crete and continuous amplitudes.

Inserting ansatz (3) in Eq. (1) and projecting over the basis 
states lead to the NCSMC equations [22], written in a schematic 
block-matrices notation as(

H Jπ T
7 h Jπ T

h Jπ T H Jπ T

)(
c Jπ T

γ Jπ T

)
= E

(
I Jπ T
7 g Jπ T

g Jπ T N Jπ T

)(
c Jπ T

γ Jπ T

)
. (4)

The upper diagonal blocks in the left- and right-hand sides of the 
equation are the Hamiltonian and overlap matrix elements on the 
square-integrable seven-body states obtained from the NCSM diag-
onalization,

(H Jπ T
7 )λλ′ = 〈7λ Jπ T |H|7λ′ Jπ T 〉 = Eλδλλ′ , (5)

(I Jπ T
7 )λλ′ = 〈7λ Jπ T |7λ′ Jπ T 〉 = δλλ′ . (6)

The lower diagonal blocks are the Hamiltonian and overlap matrix 
elements on the 4He + 3He cluster states,

H Jπ T
νν ′ (r, r′) = 〈� Jπ T

νr |Â43 HÂ43|� Jπ T
ν ′r′ 〉, (7)

N Jπ T
νν ′ (r, r′) = 〈� Jπ T

νr |Â2
43|� Jπ T

ν ′r′ 〉. (8)

The off-diagonal blocks are the coupling Hamiltonian and over-
lap matrix elements between square-integrable states and cluster 
states,

h Jπ T
λν (r) = 〈7λ Jπ T |HÂ43|� Jπ T

νr 〉, (9)

g Jπ T
λν (r) = 〈7λ Jπ T |Â43|� Jπ T

νr 〉. (10)

The system of coupled equations (4), transformed first into an 
orthogonal form [22], is solved by means of the microscopic 
R-matrix method on a Lagrange mesh [29–31], which enforces 
the proper bound-state or scattering-state asymptotic behavior of 
functions γ Jπ T

ν . The asymptotic normalization coefficients and the 
phase shifts (or the collision matrix elements if several channels 
are open) are then computed from the R-matrix. When only one 
channel is open, the value of the R-matrix at zero colliding en-
ergy enables a simple and accurate evaluation of the scattering 
lengths [32]. Resonances can also be studied with this approach. 
Indeed, extending the microscopic R-matrix approach to complex 
energies (see Ref. [33] for a closely related approach) allows the 
determination of the Siegert states [34], which are solutions of the 
Schrödinger equation (1) with purely outgoing waves at infinite 
relative distance r43. The complex energies of these states are the 
poles of the S-matrix, thus providing directly the energy and width 
of the resonances.

Finally, by computing the matrix elements of the electromag-
netic multipole operators between the initial α + 3He scattering 
state, corresponding to the energy of the collision, and the final 
7Be bound state, the 3He(α, γ )7Be astrophysical S factors can be 
evaluated [35]. The derivation of the electromagnetic matrix el-
ements between NCSMC basis functions is non-trivial [36] but a 
complete presentation of such formalism is beyond the scope of 
the present letter and will be published elsewhere.
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Fig. 1. (Color online.) The 7Be and 7Li spectra obtained from the NCSM and NCSMC 
approaches and from experiments [47]. Only states with isospin T = 1/2 are con-
sidered. Energies are given with respect to the α + 3He/3H threshold. Rectangles 
symbolize the widths of resonances. The question mark indicates that the width is 
not experimentally determined.

3. Results

The nucleon–nucleon interaction is described by a chiral N3LO 
N N potential [37] softened via the similarity-renormalization-
group (SRG) method [38–41], which reduces the influence of 
momenta higher than an SRG resolution scale h̄�. For com-
putational reasons, in the present applications, both chiral and 
renormalization-induced three- and higher-body forces are disre-
garded. To get the correct tail of the bound-state wave functions 
and hence sensible astrophysical S factors, the SRG resolution scale 
is chosen as � = 2.15 fm−1 to reproduce, as accurately as possi-
ble, the experimental separation energies of the 7Be and 7Li nuclei 
for the largest accessible model space (see below for its speci-
fications). An analogous strategy has already been followed in a 
similar context: the study of the 7Be(p, γ )8B radiative capture with 
the NCSM/RGM approach [42].

All partial waves with total angular momentum J ∈ {1/2, 3/2,

5/2, 7/2}, positive or negative parities, and isospin T = 1/2 are 
considered. The HO frequency is � = 20 MeV/h̄ for both square-
integrable states and cluster states included in expansion (3). All 
NCSM eigenstates up to about 13 MeV with respect to the α +
3He/3H threshold are included in the model space, which cor-
responds to one or two states by partial wave. As an exam-
ple, the negative-parity NCSM states can be seen in the left-
most column of Fig. 1. The values Nmax = 11 for positive-parity 
states and Nmax = 10 for negative-parity states are considered. 
The 4He + 3He (4He + 3H) cluster states are built by coupling 
the NCSM ground states of 4He [( Jπ T ) = (0+0)] and 3He (3H) 
[( Jπ T ) = (1/2+1/2)] obtained with Nmax = 12, except if another 
value is explicitly specified. For studying the convergence prop-
erties, smaller values of Nmax are used but the gap between the 
values of Nmax used for computing the colliding-nuclei wave func-
Table 1
Ground-state energies and charge radii of the 4He, 3He, and 3H nuclei calculated 
with the no-core shell model with Nmax = 12 and compared with converged values 
(obtained with higher values of Nmax) and with experimental data (Refs. [43,45] for 
energies and Refs. [44,46] for radii). The chiral N3LO N N potential softened via the 
SRG with � = 2.15 fm−1 is used.

Nucleus Eg.s. [MeV] rch [fm]
4He −27.97 1.68 Nmax = 12

−28.03 1.68 converged
−28.296 1.681(4) Exp. [43,44]

3He −7.49 1.95 Nmax = 12
−7.55 2.00 converged
−7.718 1.973(14) Exp. [45,44]

3H −8.24 1.76 Nmax = 12
−8.30 1.79 converged
−8.482 1.7591(363) Exp. [45,46]

Table 2
Properties of the 7Be and 7Li bound states calculated within the NCSM and NCSMC 
approaches and compared with experimental data [47–51]. The 7Be and 7Li energies 
are given with respect to the α + 3He and α + 3H thresholds, respectively.

7Be NCSM NCSMC Exp. Refs.

E3/2− [MeV] −0.82 −1.52 −1.587 [47]
E1/2− [MeV] −0.49 −1.26 −1.157 [47]
rch [fm] 2.375 2.62 2.647(17) [48]
Q [e fm2] −4.57 −6.14 −
μ [μN ] −1.14 −1.16 −1.3995(5) [48]

7Li NCSM NCSMC Exp. Refs.

E3/2− [MeV] −1.79 −2.43 −2.467 [47]
E1/2− [MeV] −1.46 −2.15 −1.989 [47]
rch [fm] 2.21 2.42 2.39(3) [49]
Q [e fm2] −2.67 −3.72 −4.00(3) [50]
μ [μN ] 3.00 3.02 3.256 [51]

tions, the seven-body positive-parity states and the seven-body 
negative-parity states is always the same. No cluster states involv-
ing excited states of 4He or 3He (3H) are considered. The orthogo-
nal version of NCSMC equations (4) are solved by the microscopic 
R-matrix with a channel radius a = 12 fm and 40 Lagrange-mesh 
points.

The 4He, 3He, and 3H ground-state energies and charge radii 
obtained with Nmax = 12 are given in Table 1. They are compared 
with the exact values obtained by increasing Nmax up to conver-
gence and with the experimental data. At Nmax = 12, the 4He, 3He, 
and 3H ground-state properties are close to their converged values 
with a relative difference of less than 1% for the energies and less 
than 3% for the radii. They are also close to the experimental val-
ues: the energies at Nmax = 12 differ from the experimental ones 
by less than 3% while the radii at Nmax = 12 differ by less than 1% 
from the experimental ones or are in agreement with them.

In the following, we discuss the 7Be and 7Li bound-state prop-
erties as they are obtained within the NCSMC approach. Both nu-
clei have a ground state characterized by ( Jπ T ) = (3/2−1/2) and 
an excited state characterized by ( Jπ T ) = (1/2−1/2). Their ener-
gies are displayed in Table 2 and compared with the values ob-
tained with the square-integrable part of the basis only and with 
the experimental values. The charge radii (rch), quadrupole mo-
ments (Q ), and magnetic dipole moments (μ) of the 7Be and 7Li 
ground states are also given in Table 2.

Comparing NCSM and NCSMC results shows that the explicit in-
clusion of cluster states (for a given Nmax) has a strong impact on 
the energies, charge radii, and quadrupole moments. For all these 
quantities but the 7Be quadrupole moment, which has not been 
measured yet, the inclusion of cluster basis states significantly re-
duces the gap between calculated and experimental values. On 
the contrary, the magnetic dipole moment is little affected by the 
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Table 3
Energies (Er ) and widths () in MeV of 7Be and 7Li resonance states up to 10 MeV
obtained from the NCSM and NCSMC approaches and from experiments [47]. Only 
resonances with isospin T = 1/2 are considered. Resonance energies are given with 
respect to the α + 3He/3H threshold. Experimental uncertainties are not displayed. 
Widths marked with an asterisk cannot be extracted reliably because the 6Li + N
decay channel is not considered in these calculations.

7Be NCSM NCSMC Exp.

Jπ Er Er  Er 

7/2− 4.42 3.61 0.33 2.98 0.175

5/2− 6.16 4.87 1.00 5.14 1.2

5/2− 7.56 7.55 ∗ 5.62 0.40

3/2− 9.11 9.14 0.29 8.31 1.8

1/2− 9.93 9.93 ∗ – –

7/2− 10.05 9.98 0.40 7.68 –

7Li NCSM NCSMC Exp.

Jπ Er Er  Er 

7/2− 3.53 2.79 0.214 2.18 0.069

5/2− 5.24 4.04 0.785 4.14 0.918

5/2− 6.84 6.84 ∗ 4.99 0.080

3/2− 8.47 8.51 0.297 6.28 4.712

1/2− 9.28 9.28 ∗ 6.62 2.752

7/2− 9.41 9.33 0.435 7.10 0.437

presence of the α + 3He/3H cluster degrees of freedom. The dis-
crepancy between its theoretical and experimental values is mostly 
due to the two-body electromagnetic currents, which are missing 
in our approach.

An analogous comparison for the 7Be and 7Li computed and 
measured spectra is given in Table 3 and in Fig. 1. Note that the 
NCSM approach can only provide the energies of resonances, not 
their widths. Including the α + 3He (α + 3H) cluster states in 
the model space reduces the gap between the theoretical and ex-
perimental energies of the first two resonances while the energies 
of the other resonances are nearly unaffected. The first 7/2− reso-
nance is overestimated by 600 keV while the first 5/2− resonance 
is underestimated by 300 keV for the 7Be system and by 100 keV 
for the 7Li system. The widths of the second 5/2− and of the 1/2−
resonances obtained with the NCSMC approach are unphysically 
small (less than 10 keV). The escape width for these resonances 
is missing because the corresponding decay channel (6Li + N) is 
not included in the calculations. The explicit inclusion of 6Li + N
cluster states in the basis should cure this problem and also af-
fect the other states close or above the 6Li + N threshold. While 
at energies relevant for astrophysics the radiative capture is clearly 
non-resonant, the first 7/2− resonance in the 7Be spectrum plays 
a minor but non-negligible role at the relevant energies for labo-
ratory measurements, as it is shown further.

The α + 3He and α + 3H elastic phase shifts are computed 
for relative collision energies up to ∼10 MeV and shown in Fig. 2. 
For the sake of clarity, the jump of +180◦ in the phase shifts at 
the second 5/2− and 7/2− resonance energies are not displayed. 
As a complementary information to the phase shifts, the scattering 
lengths for the 1/2+ , 1/2− , and 3/2− partial waves are provided in 
Table 4. For the 1/2− and 3/2− partial waves, they are compared 
with the values obtained in Ref. [55] from the experimental phase 
shifts and asymptotic normalization coefficients (ANC) by using re-
lations linking the effective-range expansion and the ANC. Such a 
method is not applicable for the 1/2+ partial wave since there is 
no bound states in this partial wave. Therefore, for the 1/2+ partial 
wave, we cite the value obtained in Ref. [54] from a microscopic 
cluster model reproducing the experimental phase shits. This value 
cannot be considered, strictly speaking, as an experimental one but 
provides a reasonable point of comparison.
Fig. 2. (Color online.) The α + 3He and α + 3H elastic phase shifts obtained from 
the NCSMC approach and from experiments [52,53]. Energies are given with respect 
to the α + 3He/3H threshold.

Table 4
Scattering lengths a Jπ associated with partial waves Jπ for the α + 3He and 
α + 3H collisions. Values inferred in Refs. [54,55] from the experimental phase 
shifts are given for comparison in column “Exp.” (see text for more details).

α + 3He NCSMC “Exp.” Refs.

a1/2+ [fm] 7.7 41.06 [54]
a1/2− [fm3] 263.9 413 ± 7 [55]
a3/2− [fm3] 210.4 301 ± 6 [55]

α + 3H NCSMC “Exp.” Refs.

a1/2+ [fm] 5.4 13.05 [54]
a1/2− [fm3] 82.6 95.13 ± 1.73 [55]
a3/2− [fm3] 70.0 58.10 ± 0.65 [55]

In both systems, the 1/2+ theoretical phase shifts overesti-
mate the corresponding experimental ones. To analyze this dis-
crepancy, we focuses on one system, namely α + 3He. The 1/2+
phase shifts are displayed in Fig. 3 for three different values of 
the SRG parameter � (2.1, 2.15, and 2.2 fm−1) and the conver-
gence with respect to Nmax is illustrated for the harder potential 
(� = 2.2 fm−1). The convergence for the two other values of � is 
expected to be similar. While the 1/2+ phase shifts are not fully 
converged at Nmax = 12, the pattern of convergence indicates that, 
even by increasing Nmax, which is out of reach for computational 
reasons, the experimental phase shifts will not be reproduced for 
� = 2.2 fm−1. Neither will they be reproduced by considering 
the two other values of � since the difference between the 1/2+
phase shifts for the three adopted values of � is small. Based on 
these results, we can reasonably argue that the non-reproduction 
of the experimental 1/2+ phase shifts by our approach is a fea-
ture of the two-nucleon forces used here and not a consequence of 
a non-fully converged calculation. Taking the three-nucleon forces 
into account could impact significantly the phase shifts. The same 
conclusions can be drawn from the analysis of the 1/2+ scattering 
lengths given in Table 5 for different values of the SRG parameter 
� and different values of Nmax.
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Fig. 3. (Color online.) 1/2+ phase shifts for different values of the SRG parameter: 
� = 2.1 fm−1 (dotted lines), � = 2.15 fm−1 (solid lines), and � = 2.2 fm−1 (dashed 
lines). For � = 2.2 fm−1, different values of Nmax are considered; the Nmax value 
used for computing the colliding-nuclei wave functions is given.

Table 5
1/2+ scattering length for the α + 3He collision for different values of the SRG 
parameter � and different values of Nmax; the Nmax value used for computing the 
colliding-nuclei wave functions is given.

� [fm−1] Nmax a1/2+ [fm]
2.2 8 −2.5
2.2 10 6.5
2.2 12 9.1
2.15 12 7.7
2.1 12 6.2

Fig. 4. Differential α + 3He elastic cross sections (dσ/d�) normalized by the dif-
ferential Rutherford cross sections (dσR/d�) as a function of the scattering angle 
measured in the c.m. frame. Experimental data come from Ref. [56].

For negative-parity partial waves, the discrepancy between the-
oretical and experimental resonances seen in Fig. 1 is also visible 
in the phase shifts. Moreover, the splitting between the 1/2− and 
3/2− is underestimated, as it can be seen from the comparison of 
the phase shifts and of the scattering lengths. Instead of analyz-
ing the phase shifts and the scattering lengths, we can compare 
directly theoretical and experimental cross sections. In Fig. 4, the 
differential α + 3He elastic cross sections are displayed for differ-
ent angles at two particular colliding energies and compared with 
experimental data from Ref. [56], for which no phase-shift analysis 
exists. Our approach reproduces the general trends of the experi-
mental data.

To evaluate the impact of the discrepancies in the elastic scat-
tering on the 3He(α, γ )7Be and 3H(α, γ )7Li astrophysical S factors, 
we adopt a phenomenological model based on the NCSMC results 
in the largest model space. The basic idea is to consider the en-
Fig. 5. (Color online.) Astrophysical S factor for the 3He(α, γ )7Be and 3H(α, γ )7Li 
radiative-capture processes obtained from the NCSMC approach and from its phe-
nomenological version and compared with other theoretical approaches [3,20] and 
with experiments [57–60,6–13,61–63,15]. Recent data are in color (online) and old 
data are in light grey.

Table 6
3He(α, γ )7Be and 3H(α, γ )7Li astrophysical S factors extrapolated at zero collision 
energy. Experimental data come from Refs. [5,15]. For the 3He(α, γ )7Be reaction, 
the numbers in parentheses are the errors in the least significant digits coming from 
the experiments and from the theoretical extrapolation while for the 3H(α, γ )7Li 
reaction, they are the statistical and systematic errors.

NCSMC Exp. Refs.

S3He(α,γ )7Be(0) [keV b] 0.59 0.56(2)(2) [5]
S3H(α,γ )7Li(0) [keV b] 0.13 0.1067(4)(60) [15]

ergies of the square-integrable NCSM basis states Eλ , appearing 
in Eq. (5), as adjustable parameters. These new degrees of free-
dom are then used to reproduce the experimental 7Be and 7Li 
bound-state and resonance energies and reducing the gap between 
theoretical and experimental 1/2+ phase shifts.

The 3He(α, γ )7Be and 3H(α, γ )7Li astrophysical S factors ob-
tained with the NCSMC approach and with its phenomenologi-
cal version are displayed in Fig. 5 and compared with experi-
ment [57–60,6–13,61–63,15]. The astrophysical S factors extrap-
olated at zero colliding energy are given in Table 6. The electric 
E1 and E2 transitions as well as the magnetic M1 transitions have 
been considered. For the energy ranges which are considered, the 
contribution of the E1 transitions is dominant while M1 contri-
bution is essentially negligible and the E2 transitions play a small 
but visible role in the 3He(α, γ )7Be radiative capture, mostly near 
the 7/2− resonance energy. Qualitatively, the 3He(α, γ )7Be astro-
physical S factors agree rather well with the experimental ones. 
The results obtained with the phenomenological model are sim-
ilar up to approximately the 7/2− resonance energy. Indeed, the 
peak in the experimental S factor at a relative collision energy of 
about 3 MeV corresponds to a E2 transition from the 7/2− reso-
nance to the 3/2− ground state. Since the 7/2− resonance energy 
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is slightly overestimated by our theoretical approach, the energy 
of the corresponding peak in the S factor is also overestimated. On 
the contrary, in the phenomenological approach, the experimen-
tal energy and width of the 7/2− resonance are reproduced and 
hence the energy and width of the corresponding peak in the S
factor. The adjustment of the 7Be square-integrable energies in the 
phenomenological approach to reproduce the experimental bound-
state energies with an accuracy of 5 keV or better has an impact of 
1% or less on the astrophysical S factor for the energy range con-
sidered in Fig. 5. As it can be expected, the adjustment of the 5/2−
resonance energies has a negligible effect on the astrophysical S
factor, about 0.1%. The 1/2+ phase shifts are not very sensitive to 
the energies of the square-integrable NCSM states, which are the 
adjustable parameters of our phenomenological model. Even by in-
creasing these energies by amounts as large as 10 MeV, the 1/2+
phase shift is only reduced by 0.5◦ at 1 MeV, 1.5◦ at 2 MeV, and 2◦
at 3 MeV. The consequent impact on the astrophysical S factors is 
within few percents. A further improvement of the 3He(α, γ )7Be
astrophysical S factors would require the inclusion of three-body 
forces and possibly the increase of the accuracy of the basis states, 
i.e., the increase of Nmax. The importance of the three-body forces 
is also highlighted by comparing the results obtained with the 
NCSMC for different SRG resolution scales � (not shown in the 
figures). Increasing (reducing) � by 0.05 fm−1 induces a reduction 
(an increase) of the astrophysical S factor by an amount between 
about 30 eV b and 60 eV b over the energy range considered in 
Fig. 5.

In Fig. 5, other theoretical results based on two different 
realistic N N interactions [3,20] are also presented. Nollet’s ap-
proach [3] is not fully microscopic but hybrid, based on both ab ini-
tio variational Monte Carlo wave functions and phenomenological 
potential-model wave functions. In contrast, Neff’s calculation [20]
is fully microscopic. As our approach, it is based on resonating-
group method wave functions and the microscopic R-matrix to 
enforce the proper boundary conditions, but the model space is 
built from fermionic molecular dynamics (FMD) wave functions 
and only the E1 transitions are considered. Although the FMD ap-
proach is not fully able to describe the short-range correlations of 
the wave function, a good agreement between theoretical and ex-
perimental 3He(α, γ )7Be astrophysical S factor was obtained [20]. 
Let us stress that Nollet’s and Neff’s approaches and the present 
one are – for technical reasons – based on three different N N in-
teractions. They are thus not supposed to give the same results 
and, in fact, both absolute values of the astrophysical S factors and 
their energy dependence differ significantly. To get some insights 
on these differences, the E1 contributions to the 3He(α, γ )7Be as-
trophysical S factors obtained in this work are decomposed into 
the different partial waves and compared with Neff’s results [64]
in Fig. 6. Because of the absence of the centrifugal barrier, the tran-
sitions from the 1/2+ partial wave (
 = 0) are the most important 
and those are the ones for which we find the largest difference. 
A better knowledge of the empirical α + 3He s-wave phase shifts 
could thus provide a useful test of the accuracy of the theoretical 
results.

The 3H(α, γ )7Li astrophysical S factors are overestimated over 
the full energy range in our calculation. The phenomenologi-
cal approach improves only slightly the situation. As shown in 
Fig. 5, a similar behavior is present, though less pronounced, 
in Neff’s calculations [20] while Nollet’s approach [3] reproduces 
the 3H(α, γ )7Li astrophysical S factor but underestimates the 
3He(α, γ )7Be one. This suggests a possible underestimation of the 
experimental systematic uncertainties and underscores the need 
for new experimental studies of 3H(α, γ )7Li and a more com-
plete microscopic calculation, including the effect of three-nucleon 
forces. Again, the dependence of the results on the SRG param-
Fig. 6. (Color online.) Partial-wave decomposition of the E1 contributions to the 
3He(α, γ )7Be astrophysical S factors with the NCSMC approach (solid lines) com-
pared with Neff’s calculations (dashed lines) [64].

Fig. 7. (Color online.) Ratio (R) of the 3He(α, γ )7Be and 3H(α, γ )7Li radiative-
capture cross sections to the seven-nucleon excited state and to the seven-nucleon 
ground state obtained from the NCSMC, from its phenomenological version and 
from experiments [9,8,10,62,63,15].

eter has been studied. Increasing (reducing) of � by 0.05 fm−1

induces a reduction (an increase) of the astrophysical S factor by 
about 10 eV b over the energy range considered in Fig. 5. It has 
to be noted that the calculations based on � = 2.15 fm−1 repro-
duce more accurately the seven-nucleon bound-state energies and 
therefore, the astrophysical S factors for this � value should be 
more reliable.

Finally, in Fig. 7, we compare the ratio of the radiative-capture 
cross sections to the seven-nucleon excited state and to the seven-
nucleon ground state obtained from our approaches and from ex-
periments. Our theoretical results agree rather well with the ex-
perimental data. Differences between the NCSMC approach and its 
phenomenological version are comparable with the size of the ex-
perimental error bars.
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4. Conclusion

In this letter, the 3He(α, γ )7Be and 3H(α, γ )7Li radiative-
capture processes are described by means of the no-core shell 
model with continuum approach [21,22]. Although the approach is 
restricted to two-nucleon forces, a rather good description of 7Be 
and 7Li nuclei is obtained. Theoretical and experimental α + 3He
and α + 3H elastic phase shifts do not agree perfectly well. How-
ever, the discrepancy is difficult to characterize because of the 
lack of knowledge on the experimental uncertainties. New exper-
imental studies of the α + 3He and α + 3H elastic scattering 
would be highly desirable to probe more accurately the quality 
of the scattering wave functions. At low energies, the theoretical 
s-wave phase shifts are overestimated by our approach. This has 
a direct impact on the energy dependence of the astrophysical 
S factor at low energies, which is therefore not exactly repro-
duced. The overestimation of the s-wave phase shifts is mostly 
due to the adjustment of the nucleon–nucleon interaction for re-
producing the 7Be and 7Li binding energies without three-nucleon 
forces with the largest considered model space. Taking the three-
nucleon forces into account could thus reduce this discrepancy. 
Moreover, the inclusion of three-body forces would reduce the de-
pendence of renormalization of the inter-nucleon interactions on 
the results, which would enable us to consider softer interactions, 
leading to a faster convergence. Including the three-body inter-
actions is thus the next step in the development of an ab initio
approach of radiative-capture reactions. However, this a particu-
larly challenging task, which requires analytic developments and 
large computational efforts. Approximate ways to include the ef-
fects of three-body forces via the normal ordering technique [65]
are currently under study.
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