1,136 research outputs found

    Holographic View on Quantum Correlations and Mutual Information between Disjoint Blocks of a Quantum Critical System

    Get PDF
    In (d+1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA) networks, tensors are connected so as to reproduce the discrete, (d + 2) holographic geometry of Anti de Sitter space (AdSd+2) with the original system lying at the boundary. We analyze the MERA renormalization flow that arises when computing the quantum correlations between two disjoint blocks of a quantum critical system, to show that the structure of the causal cones characteristic of MERA, requires a transition between two different regimes attainable by changing the ratio between the size and the separation of the two disjoint blocks. We argue that this transition in the MERA causal developments of the blocks may be easily accounted by an AdSd+2 black hole geometry when the mutual information is computed using the Ryu-Takayanagi formula. As an explicit example, we use a BTZ AdS3 black hole to compute the MI and the quantum correlations between two disjoint intervals of a one dimensional boundary critical system. Our results for this low dimensional system not only show the existence of a phase transition emerging when the conformal four point ratio reaches a critical value but also provide an intuitive entropic argument accounting for the source of this instability. We discuss the robustness of this transition when finite temperature and finite size effects are taken into account.Comment: 21 pages, 5 figures. Abstract and Figure 1 has been modified. Minor modifications in Section 1 and Section

    Beyond Logarithmic Corrections to Cardy Formula

    Full text link
    As shown by Cardy modular invariance of the partition function of a given unitary non-singular 2d CFT with left and right central charges c_L and c_R, implies that the density of states in a microcanonical ensemble, at excitations Delta and Delta-bar and in the saddle point approximation, is \rho_0(\Delta,\bar\Delta;c_L, c_R)=c_L c_R \exp(2\pi\sqrt{{c_L\Delta}/{6}})\exp(2\pi\sqrt{{c_R\bar\Delta}/{6}}). In this paper, we extend Cardy's analysis and show that in the saddle point approximation and up to contributions which are exponentially suppressed compared to the leading Cardy's result, the density of states takes the form \rho(\Delta,\bar\Delta; c_L,c_R)= f(c_L\Delta) f(c_R\bar\Delta)\rho_0(\Delta,\bar\Delta; c_L, c_R), for a function f(x) which we specify. In particular, we show that (i) \rho (\Delta,\bar\Delta; c_L, c_R) is the product of contributions of left and right movers and hence, to this approximation, the partition function of any modular invariant, non-singular unitary 2d CFT is holomorphically factorizable and (ii) \rho(\Delta,\bar\Delta; c_L, c_R)/(c_Lc_R) is only a function of cRΔˉc_R\bar\Delta and cLΔc_L\Delta. In addition, treating \rho(\Delta,\bar\Delta; c_L, c_R) as the density of states of a microcanonical ensemble, we compute the entropy of the system in the canonical counterpart and show that the function f(x) is such that the canonical entropy, up to exponentially suppressed contributions, is simply given by the Cardy's result \ln\rho_0(\Delta,\bar\Delta; c_L, c_R).Comment: 30 pages, no figures; v2: minor improvements, one reference added, v3: minor corrections to match the published versio

    The progression from obesity to type 2 diabetes in Alström syndrome.

    Get PDF
    Rapporten Àr en studie av ÄtgÀrder mot kemiska hÀlsorisker inom kemisk industri.Rapporten Àr en studie av ÄtgÀrder mot kemiska hÀlsorisker inom kemisk industri

    Initial/boundary-value problems of tumor growth within a host tissue

    Full text link
    This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori nonnegativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Direct Integration and Non-Perturbative Effects in Matrix Models

    Full text link
    We show how direct integration can be used to solve the closed amplitudes of multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, we give explicit expressions for the ring of non-holomorphic modular objects that are needed to express all closed matrix model amplitudes. This allows us to integrate the holomorphic anomaly equation up to holomorphic modular terms that we fix by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg--Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2)\Gamma(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. We use these results to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, we argue that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model.Comment: 51 pages, 8 figure

    ALMA Observations of the Debris Disk of Solar Analogue τ Ceti

    Get PDF
    We present 1.3 mm observations of the Sun-like star τ Ceti with the Atacama Large Millimeter/submillimeter Array that probe angular scales of (4 au). This first interferometric image of the τ Ceti system, which hosts both a debris disk and a possible multiplanet system, shows emission from a nearly face-on belt of cold dust with a position angle of surrounding an unresolved central source at the stellar position. To characterize this emission structure, we fit parametric models to the millimeter visibilities. The resulting best-fit model yields an inner belt edge of au, consistent with inferences from lower resolution, far-infrared Herschel observations. While the limited data at sufficiently short baselines preclude us from placing stronger constraints on the belt properties and its relation to the proposed five planet system, the observations do provide a strong lower limit on the fractional width of the belt, with 99% confidence. This fractional width is more similar to broad disks such as HD 107146 than narrow belts such as the Kuiper Belt and Fomalhaut. The unresolved central source has a higher flux density than the predicted flux of the stellar photosphere at 1.3 mm. Given previous measurements of an excess by a factor of ∌2 at 8.7 mm, this emission is likely due to a hot stellar chromosphere.ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. M.A.M. acknowledges support from a National Science Foundation Graduate Research Fellowship (DGE1144152). S.M.L. gratefully acknowledges support from the NRC Canada Plaskett Fellowship. B.C.M. acknowledges support from a Natural Science and Engineering Research Council (NSERC) Discovery Accelerator Supplement grant. G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow. M.B. acknowledges support from a FONDECYT Postdoctral Fellowship, project no. 3140479 and the Millennium Science Initiative (Chilean Ministry of Economy), through grant RC130007

    Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China.

    Get PDF
    A recent genome-wide association study of lung cancer among never-smoking females in Asia demonstrated that the rs2736100 polymorphism in the TERT-CLPTM1L locus on chromosome 5p15.33 was strongly and significantly associated with risk of adenocarcinoma of the lung. The telomerase gene TERT is a reverse transcriptase that is critical for telomere replication and stabilization by controlling telomere length. We previously found that longer telomere length measured in peripheral white blood cell DNA was associated with increased risk of lung cancer in a prospective cohort study of smoking males in Finland. To follow up on this finding, we carried out a nested case-control study of 215 female lung cancer cases and 215 female controls, 94% of whom were never-smokers, in the prospective Shanghai Women's Health Study cohort. There was a dose-response relationship between tertiles of telomere length and risk of lung cancer (odds ratio (OR), 95% confidence interval [CI]: 1.0, 1.4 [0.8-2.5], and 2.2 [1.2-4.0], respectively; P trend = 0.003). Further, the association was unchanged by the length of time from blood collection to case diagnosis. In addition, the rs2736100 G allele, which we previously have shown to be associated with risk of lung cancer in this cohort, was significantly associated with longer telomere length in these same study subjects (P trend = 0.030). Our findings suggest that individuals with longer telomere length in peripheral white blood cells may have an increased risk of lung cancer, but require replication in additional prospective cohorts and populations

    The matrix model version of AGT conjecture and CIV-DV prepotential

    Full text link
    Recently exact formulas were provided for partition function of conformal (multi-Penner) beta-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted as Dotsenko-Fateev correlator of screenings and analytically continued in the number of screening insertions, represents generic Virasoro conformal blocks. Actually these formulas describe the lowest terms of the q_a-expansion, where q_a parameterize the shape of the Penner potential, and are exact in the filling numbers N_a. At the same time, the older theory of CIV-DV prepotential, straightforwardly extended to arbitrary beta and to non-polynomial potentials, provides an alternative expansion: in powers of N_a and exact in q_a. We check that the two expansions coincide in the overlapping region, i.e. for the lowest terms of expansions in both q_a and N_a. This coincidence is somewhat non-trivial, since the two methods use different integration contours: integrals in one case are of the B-function (Euler-Selberg) type, while in the other case they are Gaussian integrals.Comment: 27 pages, 1 figur
    • 

    corecore