In (d+1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA)
networks, tensors are connected so as to reproduce the discrete, (d + 2)
holographic geometry of Anti de Sitter space (AdSd+2) with the original system
lying at the boundary. We analyze the MERA renormalization flow that arises
when computing the quantum correlations between two disjoint blocks of a
quantum critical system, to show that the structure of the causal cones
characteristic of MERA, requires a transition between two different regimes
attainable by changing the ratio between the size and the separation of the two
disjoint blocks. We argue that this transition in the MERA causal developments
of the blocks may be easily accounted by an AdSd+2 black hole geometry when the
mutual information is computed using the Ryu-Takayanagi formula. As an explicit
example, we use a BTZ AdS3 black hole to compute the MI and the quantum
correlations between two disjoint intervals of a one dimensional boundary
critical system. Our results for this low dimensional system not only show the
existence of a phase transition emerging when the conformal four point ratio
reaches a critical value but also provide an intuitive entropic argument
accounting for the source of this instability. We discuss the robustness of
this transition when finite temperature and finite size effects are taken into
account.Comment: 21 pages, 5 figures. Abstract and Figure 1 has been modified. Minor
modifications in Section 1 and Section