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1 Introduction

Entanglement entropy (EE) is by now regarded as a valuable tool to witness the amount

of entanglement in quantum field theories and many body systems. By partitioning a

given system S into two complementary sets A and Ã such that S = A ∪ Ã, the reduced

density matrix ρA (i.e., the density matrix for an observer accessing only the degrees of

freedom of the subsystem A), is obtained by tracing the full density matrix ρ over the

degrees of freedom contained in Ã i.e., ρA = Tr eA
(ρ). The EE accounts for the amount of

quantum correlations between the complementary regions A and Ã and is defined as the

von Neumann entropy of ρA,

SA = −Tr(ρA log ρA) . (1.1)

A standard approach to compute the entanglement entropy makes use of the replica

trick [1–3]. The replica trick may be applied when the density matrix for the full system

is represented by a path integral (as in the vacuum or in a thermal state); then, one can

rather easily obtain the EE (1.1) of the subsystem A from the knowledge of,

SA = − ∂

∂n
Trρn

A|n=1 . (1.2)

In [3], it has been shown that, for d = 1 quantum critical models, Trρn
A =

cn(ℓA/ǫ)
−(c/6)(n−1/n), where ℓA is the length of the interval A, c is the central charge
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of the conformal field theory (CFT) describing the given system at criticality and ǫ is an

ultraviolet cutoff. Using (1.2), one obtains that the EE is given by,

SA =
c

3
log

(
ℓA
ǫ

)
+ s1 , (1.3)

where s1 is a non universal constant.

Using an alternative approach based on holography Ryu and Takayanagi (RT) derived a

celebrated formula yielding the EE of the region A provided that the (boundary) conformal

field theory describing the critical system admits an holographic gravity dual [4, 5]. In the

RT approach, the EE is obtained from the computation of a minimal surface in the dual

higher dimensional gravitational geometry (bulk theory); as a result, the entanglement

entropy SA in a CFTd+1 is given by the celebrated area law relation,

SA =
Area(γA)

4G
(d+2)
N

, (1.4)

where d is the spatial dimension of the boundary CFT, γA is the d-dimensional static

minimal surface in AdSd+2 whose boundary and area are given by ∂A and Area(γA), re-

spectively. G
(d+2)
N is the d+2 dimensional Newton constant. The RT proposal is physically

appealing since looking for the minimal surface γA separating the degrees of freedom con-

tained in region A from those contained in Ã amounts to search for the severest entropy

bound on the information hidden in the AdSd+2 region related with Ã. For d = 1, eq. (1.4)

becomes [4],

SA =
Length(γA)

4G
(3)
N

. (1.5)

Although the RT formula has not been rigorously proven its validity is supported by

very comforting evidence.1 For instance, one may show [8] that it provides a simple tool

to prove the strong subadditivity of EE, i.e. given two regions A and B,

SA + SB ≥ SA∪B + SA∩B ; (1.6)

furthermore, eq. (1.4) together with (1.6) may be used also (at least in the context of

strongly coupled gauge theories, i.e. at a t’Hooft coupling λ ≫ 1) to derive the concavity

property of coplanar Wilson loops defined on curves CA = ∂A and CB = ∂B lying in the

same two dimensional plane. Namely,

〈W (CA)〉 〈W (CB)〉 ≤ 〈W (CA∪B)〉 〈W (CA∩B)〉 , (1.7)

where CA∪B = ∂(A ∪ B) and CA∩B = ∂(A ∩ B). To derive (1.7) one only needs to note

that, from the Maldacena conjecture [9], the expectation value of a Wilson loop defined

along a curve C is related to the area of the minimal surface γ bounded by C by,

〈W (C)〉 ≃ exp(−
√
λArea(γ)) . (1.8)

1See [6, 7] for some interesting attempts to derive it.
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If in (1.8) one takes C = CA = ∂A and γ = γA, using (1.4) one can establish, up to

a constant that SA ∼ − log 〈W (∂A)〉. Similar arguments yield SB ∼ − log 〈W (∂B)〉,
SA∪B ∼ − log 〈W (∂(A ∪B))〉 and SA∩B ∼ − log 〈W (∂(A ∩B))〉. As a result, using (1.6),

one gets (1.7).

The minimal curves used in the RT formula, allow also to compute the two point

functions of conformal primary operators of CFTd+1 with an holographic gravity dual that

is an asymptotically AdSd+2 space-time. The holographic computation of the correlation

functions of these operators yields [10],

〈O(xi)O(xj)〉 ∼ exp(−∆ Length(γij)) , (1.9)

where ∆ is the operator scaling dimension and γij is minimal curve in the bulk geometry

connecting the boundary points xi and xj .

Very interesting issues [11, 12] arise if one regards A as the union of several disjoint

regions A = ∪iAi and Ã as its complement. In the simplest case one may consider two

disjoint blocks A and B such that A = A∪B. In the analysis of those situations it is most

convenient to compute the mutual information (MI) between regions A and B, which is

defined by

I(A:B) = SA + SB − SA∪B . (1.10)

MI measures the amount of correlation (classical and quantum) between the spatially

disconnected regions A and B and acts as an upper bound on the quantum correlations

between operators defined in those regions [13]; namely,

I(A:B) ≥
(〈OAOB〉 − 〈OA〉〈OB〉)2

2|OA|2|OB |2
. (1.11)

The correlators 〈OAOB〉 as well as I(A:B) for two spatially disconnected regions disclose

relevant information about the spatial distribution of entanglement in a given state of the

system. However, for two disjoint blocks, neither the MI nor the quantum correlation

functions happen to be a proper measure of the entanglement since A ∪ B is not a pure

state. A true measure of entanglement, requires the computation of negativity [14] which

is a quite challenging task using field theory methods.2

By means of the replica trick, the computation of I(A:B) requires the knowledge of

SA∪B = −Tr(ρA∪B log ρA∪B) with ρA∪B ≡ Tr eA
ρ, for which very little is known so far.

For two spatially separated regions A and B, the only exact result for SA∪B , has been

obtained for free massless fermions in two dimensions [17, 18] but it remains unknown

in its general form for other physically relevant theories such as the free compactified

boson [12]. In a recent paper [12], Trρn
A∪B for two disjoint intervals A and B - of length

l (|u1 − v1| = |u2 − v2| = l) separated by a distance d = |v1 − u2|- has been computed

yielding,

Trρn
A∪B = c2n

( |u1 − v1||u2 − v2|
|u1 − u2||v1 − v2||u1 − v2||v1 − u2|

) c

6
(n−1/n)

Fn(x) , (1.12)

2See, for instance, [15, 16] for a discussion of this issue and some numerical examples.
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with x being the conformal four-point ratio defined as

x =
|u1 − v1||u2 − v2|
|u1 − u2||v1 − v2|

=
l2

(l + d)2
. (1.13)

The function Fn(x) depends explicitly on the full operator content of the theory and is,

of course, model dependent. However, the analytic continuation of Fn(x) to n = 1 in

eq. (1.12) is hard to attain and this makes the computation of I(A:B) between disconnected

regions a rather difficult task within this approach.

In a recent work [19], using the RT formula for d = 1 quantum critical system, it

has been predicted the occurrence of a phase transition probed by the computation of the

MI between two disjoint intervals of the boundary CFTd+1; namely, as the conformal four

point ratio crosses a critical value the MI vanishes. Using exact methods, the vanishing of

the MI has been confirmed to occur also for the critical XX spin chain [20]. This result is

quite surprising from a quantum information point of view since, when the MI vanish, the

ρA∪B factorizes into ρAB = ρA⊗ρB, implying that the two blocks are completely decoupled

from each other and, thus, also the entanglement should be rigorously zero. In [19] it has

been pointed out that,

I(A:B)(x) =

{
0 , x < 1/2

(c/3) log (x/(1 − x)) , x ≥ 1/2
, (1.14)

where x is the conformal four point ratio defined in (1.13). Equation (1.14) states that

I(A:B) = 0 for x < 1/2 and it has a discontinuous first derivative at x0 = 1/2. As argued

in [19], the discontinuity in the first derivative of the MI occurs since the shape of the

geodesics (i.e., of the minimal surfaces in the bulk connecting the two disjoint intervals

of the boundary critical system) changes, as x varies, due to the switching between two

saddle points of the Euclidean action [6, 19] much similar to the one observed in [21].

In this paper, inspired by the analysis carried in [22–24], we exploit the holographic

structure of the Multiscale Entanglement Renormalization Ansatz (MERA) tensor net-

works, to analyze the correlations between disjoint blocks of a critical system described by

a (d + 1) dimensional conformal field theory lying at the boundary of an asymptotically

AdSd+2 spacetime. In order to get an hint on the pertinent ansatz for the metric to be used,

we observe that, when computing the quantum correlations between two disjoint blocks

of a boundary quantum critical system, the structure of the causal cones characteristic of

MERA [25, 26] implies the existence of two different regimes attainable by changing a pa-

rameter depending on the ratio between the size and the separation of the disjoint blocks.

We argue that this transition may be accounted by an AdSd+2 black hole geometry and

use the RT formula to compute the MI between the two disjoint regions of the boundary

critical system. As an explicit example, we use a BTZ AdS3 black hole to compute the MI

and the quantum correlations between two disjoint intervals of a one dimensional bound-

ary critical system: here, our analysis not only confirms the existence of a phase transition

emerging when the conformal four point ratio reaches a critical value but also provides a

rather intuitive entropic argument accounting for the source of this instability. Finally, we
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investigate how the holographic computation of the MI between two disjoint blocks may

be affected by finite size (and temperature) effects. Besides its appealing beauty, we feel

that a remarkable merit of the holographic approach is that it can help in establishing

fruitful connections between the phase transition analyzed in [6, 19] and analogous phase

transitions exhibited by disconnected operators such as the one occurring for disconnected

Wilson loops found in [27].

The paper is organized as follows: in section 2, we review the MERA induced AdS/CFT

duality [22, 24] and analyze its relationship with the RT holographic formula [4, 5]; there,

we argue that, when considering two disjoint blocks of the boundary CFT describing the

critical system, the MERA induced AdS/CFT duality leads rather naturally to the emer-

gence of an AdS black hole as the relevant space time metric in the dual bulk space. In

section 3 we briefly review the geometrical properties arising when the space time metric in

the bulk is described by an AdS3 BTZ black hole; there we point out also how a BTZ black

hole metric in the MERA induced dual AdS3 space easily accounts for the finite tempera-

ture corrections to the EE. In section 4 we use the RT formula [4, 5] to compute the MI and

the quantum correlations between two disjoint intervals in the CFT2 dual to the AdS3 BTZ

geometry; there we show that the RT formula, when computed using the AdS3 BTZ geom-

etry, naturally accounts for the phase transition discovered in [19] and provide an entropic

argument accounting for the emergence of this instability. Finally, in section 5 we summa-

rize our results. In the appendix A we use our approach to compute the MI and quantum

correlations between disjoint intervals of the boundary quantum critical system when the

metric of the MERA induced AdS3 space is described by a spinning BTZ black hole.

2 MERA induced AdS/CFT duality

In [22], it was firstly observed that MERA [25] may give rise to a realization of the AdS/CFT

correspondence [9]. This observation has been subsequently developed in [24]. MERA is a

real space renormalization group technique based on a series of consecutive coarse-graining

transformations reducing the amount of entanglement in a block of lattice sites of a critical

system before truncating its Hilbert space. Namely, by renormalizing the amount of entan-

glement in a given system, the MERA procedure controls the growth of the sites Hilbert

space dimension along successive scaling transformations. This entanglement renormaliza-

tion procedure may be encoded in a tensor network arranged in a set of different levels

{wk}M
k=0 accounting for the consecutive renormalization steps and, for quantum systems

at criticality, it shows a characteristic fractal structure. The tensor network implements a

renormalization group transformation which is local in space and scales local operators into

local operators. Furthermore, using MERA, it has been shown that quantum correlations

in the ground state of one and two dimensional critical quantum many body systems, could

be arranged in layers corresponding to different length scales i.e. to different steps in the

renormalization process.

As pointed out in [22–24], the entanglement structure in a quantum critical many body

system, defines a higher dimensional geometry via the renormalization process described

by the scale invariant MERA tensor network. The emerging geometry can be engineered as
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follows: all the sites in the MERA tensor network are arranged in layers, each representing a

different scale (coarse graining renormalization step). As a result, besides the coordinates

labelling the position and the time t, in MERA, one may add a ”radial” coordinate z

labelling the hierarchy of scales. Then, the higher dimensional geometry defined by MERA

may be usefully visualized by locating cells around all the sites of the tensor network

representing the quantum state: these cells are unit cells filling up the emerging ”bulk”

geometry and the size of each cell is defined to be proportional to the entanglement entropy

of the site in the cell. As a result of this procedure a gravity dual picture of the bulk emerges

quite naturally from the entanglement of the degrees of freedom of the critical system lying

on the boundary [28].

The discrete geometry emerging at the critical point is a discrete version of Anti de

Sitter space (AdS) [22, 24]. For a one-dimensional quantum critical system with a space

coordinate labelled by X, the continuous isometry w → w + α, X → eαX of the metric

ds2 ∼ dw2 + e−2w dX2 , (2.1)

is replaced by the MERA’s discretized version, w → w + k, X → 2kX or X → 3kX

depending on the binary or ternary implementation of the renormalization algorithm [26].

The analog of w = log z in the tensor network is simply the variable labelling the number

of renormalization steps carried out by the MERA algorithm.

When considering a continuous version of MERA [29], the discrete AdS-like geometry

given by (2.1), approaches its continuous version i.e. the 3-dimensional AdS space with

the scale invariant metric,

ds2 =
ℓ2

z2

(
−dt2 + dz2 + dX2

)
. (2.2)

In (2.2), ℓ is a constant called the AdS radius; it has the dimension of a length and

it is related with the curvature of the AdS space. With this choice of the space time

coordinates the one dimensional quantum critical system lies at the boundary (z = 0) of

the bulk geometry.

2.1 Ryu-Takayanagi formula in the MERA induced AdS/CFT correspondence

There is a striking relationship between the RT formula and the computation of the en-

tanglement entropy in MERA. Using MERA, the reduced density matrices and hence the

quantum correlations are determined by the structure of the causal cones [25]. The causal

cone CC(B) of a block B of l sites of the boundary critical system, is determined by grouping

— following all the levels of the MERA tensor network — all the renormalizing operators

and sites which may affect the sites in the block B. As a result, to compute the entropy

SB of the block B it is necessary to trace out any site in the bulk geometry defined by the

tensor network which does not lie in the CC(B) of the block.

The boundary of the CC(B) is a curve γB in the MERA induced AdS higher dimen-

sional geometry. The length of γB is, by definition, the sum of the entropies of all the

traced out sites [22, 25], and thus provides an upper bound for the entropy SB of B [24],

SB ≤ Length(γB) . (2.3)
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The close relationship with the geometrical RT formula comes about when one realizes

that γB can be regarded as the minimal curve of RT, since it counts the minimal number

of sites which must be traced out in the coarse graining process. Indeed, the minimal curve

γB in an optimized scale invariant MERA network [24] has proven to saturate the bound

given in (2.3); this has been confirmed by explicit computation in one dimensional critical

systems, where it has been shown that SB ∼ c
3 log l [25]. Since γB arises as a boundary of the

CC(B), it can be interpreted as an holographic screen which optimally separates the region

in the bulk described by the degrees of freedom of B, from its complementary region B̃.

2.2 Quantum correlations between disjoint blocks from MERA

In order to use MERA for computing the two point correlation functions, one should first

observe that, the CCs of two operators located at points s1 and s2 of the boundary critical

system always grow (i.e. the number of sites inside a CC(sj) at MERA level wk, is always

bigger than the number of sites at level wk−1), since k increases as one gets deeper into the

bulk geometry defined by the tensor network (2.2). As a result, there is a level w∗ where

CC(s1) and CC(s2) overlap. When the CCs overlap, the operators defined on the boundary

are correlated with an algebraic decaying functional dependence [25]. At variance, the CCs

of operators defined on finite size disjoint blocks of the boundary critical system, tend to

exponentially shrink along the ”coordinate” w labelling the MERA level [25].

As a result, for two disjoint blocks A and B of the same size l, two situations may

occur (see figure 1) depending only on the distance d between the blocks:

i) after wH ∼ log l renormalization steps, the CC(A) and the CC(B) shrink to one after

they overlap (figure 1 top). Here one expects that the correlations between the two

blocks of the boundary critical system decay algebraically.

ii) after wH ∼ log l renormalization steps, the CC(A) and the CC(B) shrink to one

without overlapping (figure 1 bottom). Here one should expect that the correlations

decay exponentially with the ”distance” between the two blocks.

It is easy to convince oneself that, if one defines w∗ ∼ log d, i)(ii) is realized when

wH > w∗ (wH < w∗).

In the following of this paper, we make the ansatz that an holographic dual spacetime

that may efficiently account for these two distinct behaviours of the casual cones, is given

by an AdSd+2 black hole geometry of radius zH ≡ l (wH = log l) when the MI between two

disjoint blocks A and B is computed by means of the RT formula. To support our ansatz

we explicitly compute the MI and the quantum correlations between disjoint blocks of a

one dimensional quantum critical system using the RT formula for the AdS3/CFT2 corre-

spondence with the bulk metric given by a AdS3 BTZ black hole. Under these assumptions,

from equation (1.5), the MI reads

I(A:B) =
1

4G
(3)
N

[Length(γA) + Length(γB) − Length(γA∪B)] , (2.4)
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Figure 1. Top: Schematic representation of MERA CC for two disjoint finite intervals A and B

when the separation between them allows for overlapping after w∗ ∼ log d renormalization steps.

The overlap occurs before the causal cones shrink to one (in our representation, when causal cones

stabilize their width after wH = log l renormalization steps). Bottom: Schematic representation

of MERA CC for two disjoint finite intervals A and B when the separation between them does

not allow for overlapping after w∗ ∼ log d renormalization steps. The curve γ that goes through

the links between the nodes of the MERA network is the minimal curve separating the CC(A) and

CC(B) from the traced out sites in the MERA bulk geometry (2.2).

with γA, γB and γA∪B being geodesic curves in the BTZ black hole background [30]. As

we shall see in the following sections, a computation of the MI carried using this approach

supports- from a different point of view- the results obtained in [19].

3 The BTZ black hole

3.1 BTZ black hole solution

Bañados, Teitelboim, and Zanelli (BTZ) showed that (2+1)-dimensional gravity has a black

hole solution, the BTZ black hole, differing from the Schwarzschild and Kerr solutions

mainly in that it is asymptotically anti-de Sitter rather than asymptotically flat. The

BTZ solution is clearly a black hole: it has an event horizon and (when rotating) an inner

horizon, and it exhibits thermodynamic properties much like those of a (3+1)-dimensional

black hole [30].
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The BTZ black hole may be obtained by orbifolding AdS3 through SL(2,C) identifica-

tions [31] and is a solution of pure gravity in three dimensions with a negative cosmological

constant described by the Einstein-Hilbert action supplemented by boundary terms [31],

I =
1

16πG

∫
d3x

√
g

(
R− 2

ℓ2

)
+ Ibndy . (3.1)

In the following we use the Euclidean signature, and use the notation of Misner, Thorne,

and Wheeler [32]; as a result, r ≡ 1/z so that the boundary is now located at r → ∞. A

simple solution of the equations of motion is just the AdS3 spacetime,

ds2 = (1 + r2/ℓ2)dt2 +
dr2

1 + r2/ℓ2
+ r2dφ2 . (3.2)

AdS3 has maximal symmetry, with the isometry group being SL(2,C) ∼= SL(2,R)L ×
SL(2,R)R.

A more general one-parameter family of solutions is provided by the non-rotating BTZ

black hole of mass M [31],

ds2 =
(r2 − r2+)

ℓ2
dt2 +

ℓ2

(r2 − r2+)
dr2 + r2dφ2 , (3.3)

describing an AdS black hole with an event horizon located at r = r+ = ℓ
√

8GM at a

temperature T = r+/2πℓ
2; of course, for large r, the solution (3.3) asymptotically ap-

proaches AdS3.

The metric of a rotating BTZ black hole of mass M and angular momentum J is given,

instead, by

ds2 =
(r2 − r2+)(r2 − r2−)

r2ℓ2
dt2 +

ℓ2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ+ i

r+r−
ℓr2

dt

)2

. (3.4)

with

M =
r2+ + r2−
ℓ2

, J =
2r+r−
ℓ

, (3.5)

r± = ℓ


M

2


1 ±

√

1 −
(
J

Mℓ

)2






1

2

. (3.6)

Now, the event horizon is located at r = r+ with r+ ≥ r− and r− being the inner Cauchy

horizon. Rotating BTZ black holes have been recently shown to be relevant in investigations

of helical Tomonaga-Luttinger liquids [33].

3.2 Dual CFT to the BTZ solution

The boundary of asymptotically AdS3 spacetimes is a two dimensional torus on which one

can define a dual CFT with its conformal symmetry being generated by two copies of the
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Virasoro algebra acting separately on the left and right moving sectors. As a result, the

CFT splits into two independent sectors at thermal equilibrium with temperatures,

TL =
r+ + r−

2πℓ2
, TR =

r+ − r−
2πℓ2

. (3.7)

The mass M and the angular momentum J in the rotating BTZ black hole geometry are

related to the Virasoro charges of the dual CFT on the boundary by

L0 −
c

24
=

1

16G
(Mℓ+ J) , L̃0 −

c̃

24
=

1

16G
(Mℓ− J) . (3.8)

with c = c̃ given by the Brown-Henneaux holographic relation [34]

c =
3ℓ

2G
(3)
N

. (3.9)

In the non rotating BTZ metric (3.3) one has

L0 −
c

24
= L̃0 −

c̃

24
=

r2+
16Gℓ

. (3.10)

It is easy to prove [31] that, for the AdS3 metric, (3.2) L0 = L̃0 = 0; this is just a

consequence of its invariance under the SL(2,R)L×SL(2,R)R group of isometries generated

by L0,±1 and L̃0,±1.

3.3 Geodesics in the BTZ geometry

The RT formula uses the spacelike geodesics in a given metric. For the BTZ black hole

these geodesics are well known. The length of the geodesics connecting two points xi and

xj separated by a distance |xi − xj| and located at the boundary of the AdS3 space whose

metric is described by a BTZ black hole (3.3), can be written as [35],

L(xi, xj) = 2ℓ log

[
β

πǫ
sinh

(
π|xi − xj |

β

)]
, (3.11)

with β = 2πℓ2/r+ and ǫ the regularizing boundary cut-off.

Using the RT formula (1.5) and (3.9), one gets the well known formula [3] for the EE

of a single connected block A of length ℓA = |x1 − x2| from the BTZ geometry; namely,

one has that

SA =
L(x1, x2)

4G
(3)
N

=
c

3
log

[
β

πǫ
sinh

(
πℓA
β

)]

≈
{

(c/3) log (ℓA/ǫ) , r+ → 0 (β → ∞)

(πc/3)(ℓA/β) + c
3 log(β/2πǫ) , r+ → ∞ (β → 0)

. (3.12)

As expected, from eq. (3.12) one recovers the logarithmic dependence only in the zero

temperature limit (i.e., when the size of the interval is small in comparison with the distance

of the horizon from the boundary); indeed, in this limit, the BTZ geodesics stay close to

– 10 –
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Figure 2. Geodesic used in computing the entanglement entropy of a region of length l = |x1−x2|
in the AdS Black Hole geometry. Left: γ does not approach the horizon (dotted line). Right: γ

wraps around the horizon.

the boundary and only probe the asymptotic form of the AdS3 BTZ geometry. (Figure 2

Left). At variance, when the size of the simply connected region A is bigger than the

distance of the horizon from the boundary, the BTZ geodesics probe the black hole horizon

extending tangentially to it; this induces the linear correction to the EE which, for a single

connected region A, describes now a thermal state at temperature T = 1/β (Fig 2 Right).

For a rotating black hole, the geodesics are given instead by

L(xi, xj) = 2ℓ log

[
βLβR

π2ǫ2
sinh

(
π|xi − xj|

βL

)
sinh

(
π|xi − xj |

βR

)]
, (3.13)

where βL,R = 1/TL,R. As a result one gets that

SA = SL
A + SR

A =

=
c

3
log

[
βL

πǫ
sinh

(
πℓA
βL

)]
+
c

3
log

[
βR

πǫ
sinh

(
πℓA
βR

)]
. (3.14)

Equation (3.14) factorizes into left and right moving sectors as expected from the left-right

decoupling of the CFT2.

4 Holographic computation of quantum correlations and mutual infor-

mation for two disjoint intervals

In this section we derive both the MI and the quantum correlations between two disjoint

intervals of a one dimensional critical system described by a CFT2 located at the boundary

of the AdS3 space. We assume in the following that the disjoint intervals A and B have

equal size l and are separated by a distance d . Namely, we take A ≡ [u1, v1] , B ≡ [u2, v2]

with |u1 − v1| = |u2 − v2| = l and |v1 − u2| = d (see figure 3). We shall see how, in both

computations, one can find a critical value of a pertinent parameter at which there is a

transition between two very different behaviors.

For the two disjoint intervals A and B the holographic computation of the MI requires

to determine the minimal curve in the bulk homologous to A ∪B. In the MERA induced

AdS/CFT correspondence, the curve γA∪B is generated by tracing out the bulk sites lying
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outside the CC(A) and CC(B) and is an holographic screen for the entropy contained in

A∪B. As a result, for generating this holographic screen, there are- just as in [19]- only two

possible options given by γ
(con)
A∪B (figure 3 Left) and γ

(dis)
A∪B (figure 3 Right), respectively: the

curve γ
(con)
A∪B (γ

(dis)
A∪B) corresponds to the overlapping (non-overlapping) configuration of the

causal cones CC(A) and CC(B) depicted in figure 1. Namely, γ
(dis)
A∪B, describes a situation

in which the two intervals are enough separated so that LA∪B = L1(u1, v1) + L2(u2, v2),

while γ
(con)
A∪B , describes a situation where the separation between the intervals is so small

that the minimal curve of the region A ∪ B, connects the inner and outer boundaries of

the two regions so that LA∪B = L1(u1, v2) + L2(v1, u2).

Of course, when γ
(dis)
A∪B is used in the holographic computation of the MI, the MI

vanishes as a consequence of eqs. (1.5) and (2.4). At variance, when one uses γ
(con)
A∪B , the

holographic computation of the MI (2.4), using as the metric of the AdS3 bulk space the one

corresponding to a BTZ black hole with the horizon located at z+ = l from the boundary

i.e. β = 2πz+, yields (3.9)

I(A:B) =
c

3
log

[
sinh (πT |u1 − v1|) sinh (πT |u2 − v2|)
sinh (πT |u1 − v2|) sinh (πT |v1 − u2|)

]
, (4.1)

with T = 1/β.

One sees that I(A:B) in eq. (4.1) equals zero when a certain ratio between l = |u1−v1| =

|u2 − v2| and d = |v1 − u2| is reached; namely, one sees that the MI, when computed using

the BTZ black hole as the metric of AdS3, vanishes at a value of the conformal four point

ratio given by x0 ∼ 0.53. This is in agreement with the result of [19]. However, an

advantage of the MERA induced AdS/CFT correspondence lies in the fact that one can

provide a rather intuitive entropic argument accounting for the use of either one of the two

minimal curves depicted in figure 3 when performing the holographic computation of MI.

Indeed, since the length of the curves γ
(con)
A∪B and γ

(dis)
A∪B are — by definition — the sum of

the entropies of all the traced out sites, the transition between the two behaviors of MI

occurs when the separation between the two (equal size) disjoint blocks A and B is such

that the entropy due to the the tracing out process yielding γ
(con)
A∪B equals the entropy due

to the tracing out process yielding γ
(dis)
A∪B .

A similar transition is found also in the computation of the quantum correlations

between two primary operators O(xA) and O(xB) (xA ∈ A and xB ∈ B) with conformal

dimension ∆ defined in the CFTd +1 describing the boundary critical system. This should

be expected in view of the bound (1.11). The AdS/CFT correspondence implies [9, 36]

that

〈O(xA)O(xB)〉 ∼ e−mL(xA,xB) , (4.2)

where ∆ ≈ mℓ and L(xA, xB) is the length of the shortest geodesic connecting the boundary

points xA and xB. Using for L(xA, xB) the expression given in (3.11), one easily gets,

〈O(xA)O(xB)〉 ∼
[

πT

sinh (πT |xA − xB|)

]2∆

≈
{
|xA − xB |−2∆ , z+ ≫ |xA − xB|
z−2∆
+ exp (−2πT∆|xA − xB |) , z+ ≪ |xA − xB|

. (4.3)
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Figure 3. Minimal curves used in the holographic computation of SA∪B and I(A:B) for to disjoint

intervals A and B.

From (4.3) one sees that there is a change from an algebraic to an exponential decaying

behavior of the two point quantum correlation function and that the transition between

the two regimes occurs when 〈O(xA)O(xB)〉 ∼ e−∆. When this happens, one has that

2π T |xA − xB| =
|xA − xB |

z+
≈ 1 , (4.4)

which defines the value of the parameter µ = |xA−xB |/l at which this transition occurs [37].

Eqs. (4.1) and (4.3) are derived for infinite systems when the central charge c → ∞.

However, one may be interested in the behavior of the MI and of the quantum correlations

in a regime where both the temperature T and the size of the system L are finite [38].

In particular, one is interested in knowing if the transition between the two very distinct

behaviors found for the infinite system is still attainable and, if so, how the critical value

of the pertinent parameter is going to be affected when T and L are finite. To grasp how

the results obtained so far in this section are going to be changed due to these finite size

effects we look at the behavior of the two point correlation functions of free fermions on

the torus [39]. For this system one has that,

〈ψ(u)ψ(v)〉ν =
θν(i|u− v|T |τ)

θν(0|τ)
∂ωθ1(0|τ)

θ1(i|u− v|T |τ) , (4.5)

where θν(ω|τ) are the modular Jacobi theta functions [40], ∂ωθ1(0|τ) ≡ ∂ωθ1(ω|τ)|ω=0, ν

defines the boundary conditions for ψ and τ ≡ iLT . For instance, for finite temperature

boundary conditions, only the sectors ν = 3, 4 of the spin structure of the fermion con-

tribute (4.5); this is to say that, on the torus, one can only choose for ψ either ν = 3, corre-

sponding to antiperiodic-periodic (Neveu-Schwarz, NS - Ramond, R) boundary conditions,

or ν = 4 which corresponds to antiperiodic-antiperiodic (NS-NS) boundary conditions.

When LT → ∞, using the standard representation of the θν functions [40, 41], one

gets

〈ψ(u)ψ(v)〉3(4) =
πT

4 sinhπT |u− v| [1 ± 2e−πLT cosh 2πT |u− v| + . . .] , (4.6)
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As a result, in the limit of finite T with L ≫ |u− v|, one may approximate eq. (4.3) with

∆ = 1/2 in terms of (4.5) and write (4.1) as,

I(A:B) =
c

3

[
Υ(v2, u1)Υ(u2, v1)

Υ(v1, u1)Υ(v2, u2)

]
+
c

3
log

[
θν(i|u1 − v2|T |τ) θν(i|u2 − v1|T |τ)
θν(i|u1 − v1|T |τ) θν(i|u2 − v2|T |τ)

]
, (4.7)

where Υ(u, v) is given by [39]

Υ(u, v) = log
∂ωθ1(0|τ)

θ1(i|u − v|T |τ) . (4.8)

For L≫ |u− v| one has that Υ(u, v) ∼ log 1/(i|u − v|T ); as a result one has

I(A:B) =
c

3
log

(
x

1 − x

)
+
c

3
log

[
θν(i|u1 − v2|T |τ) θν(i|u2 − v1|T |τ)
θν(i|u1 − v1|T |τ) θν(i|u2 − v2|T |τ)

]
, (4.9)

where x is defined in (1.13). One notices that (4.9) reduces to (1.14) when the separation

between the intervals is very small since the function fν(x, τ) defined as

fν(x, τ) = log

(
θν(i|u1 − v2|T |τ) θν(i|u2 − v1|T |τ)
θν(i|u1 − v1|T |τ) θν(i|u2 − v2|T |τ)

)
, (4.10)

approaches zero when x→ 1 while fν(x, τ) > 0 for x ≤ 1.

We observe that, in a rather large range of values for T and L, there is still a transition

between two very different behaviors of the MI. However, the critical value x0, at which

the transition occurs strongly depends on the ratio l/L i.e., 1/|τ | = (LT )−1 as reported in

figure 4. Indeed, a numerical analysis shows that, for a finite system, x0 is always x0 < 1/2

and that, only as L→ ∞, x0 → 1/2 recovering the result in [19].

For the sake of completeness we shall compute the quantum correlators and the MI in

a rotating BTZ black hole background in appendix A.

5 Concluding remarks

Originally developed within string theory, the AdS/CFT correspondence provides a geo-

metrical framework to investigate also strongly coupled condensed matter and spin sys-

tems at criticality. An intriguing observation has been that MERA [25] may be efficiently

described through the AdS/CFT correspondence by introducing an AdS metric in a perti-

nently engineered bulk space [22, 24]. In this paper we use this MERA induced AdS/CFT

correspondence to provide a framework in which the mutual information and the two point

quantum correlations between disjoint blocks of a quantum system at criticality may be

evaluated. We feel that an advantage of this approach is that, at least in principle, is not

strictly confined to the analysis of one dimensional critical systems.

In order to get an hint on the pertinent metric to be used to describe the MERA induced

bulk AdSd+2 space, we observed here that, when computing the quantum correlations be-

tween two disjoint blocks of a boundary quantum critical system, the structure of the causal

cones characteristic of MERA implies the existence of two different regimes attainable by

tuning the ratio between the size and the separation of the disjoint blocks. To account
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Figure 4. Dependence of the transition point x0 on |τ | = LT i.e. 1/|τ | ∝ l/L for the non rotating

BTZ black hole (Eq (4.9), circles) and for the quasi-extremal rotating BTZ black hole (Eq (A.3),

squares).

for this transition we proposed that the MERA induced holographic dual bulk spacetime

could be described by an AdSd+2 black hole and used the RT formula to compute the MI

of two disjoint regions of the boundary critical system. Intuitively speaking, this amounts

to orbifolding the AdS geometry introduced in [22, 24] when dealing with disjoint blocks.

As an explicit example, we used a BTZ AdS3 black hole to compute the MI and the

quantum correlations between two disjoint intervals of a one dimensional boundary quan-

tum critical system: here, our analysis not only confirmed the existence of the phase transi-

tion emerging when the conformal four point ratio reaches a critical value but also provided

a rather intuitive entropic argument explaining the source of this instability. Furthermore,

we showed how non universal behaviors may emerge in the holographic computation of the

MI between two well separated disjoint blocks. Of course, our analysis does not exclude

the possibility that other geometries — such as Lifshitz geometries — may account for the

behavior of the causal cones of disjoint blocks in MERA.

A remarkable feature of the RT approach to the computation of MI and EE taken in this

paper is that it associates with each spatial region of the boundary a unique spatial region

of the bulk [6]. This bulk to boundary map -via the structure of the causal cones- seems

to play an intriguing role also in MERA. Indeed, we exploited this map in MERA to give

an ansatz for the dual holographic geometry associated to a region made of two disjoint

blocks of the d-dimensional boundary critical system. We, then, observed that -when

the separation between the two blocks exceeds a critical value- the quantum correlations

exhibit a thermal behaviour and the EE may be computed as the thermodynamic entropy
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associated to a certain black hole. In the context of the AdS/CFT correspondence thermal

states have been recently constructed in [7].

The AdS/CFT correspondence, is a strong-weak duality. This amounts to say that,

when the dual gravity description of a quantum system is classical, the correlations on the

boundary theory are quantum and highly non-local (entanglement) [28]. In the MERA

induced AdS/CFT correspondence, the locality of the emerging AdS space is due to the

existence of entanglement at all scales in the quantum critical system located at the bound-

ary. We feel that our results may help to elucidate the nature (quantum and/or classical) of

the correlations computed using the RT formula within the AdS/CFT correspondence. In-

deed, despite the fact that MI quantifies both classical and quantum correlations, recently,

in [42], it has been shown that MI, when computed using the holographic RT formula,

obeys the same monogamy relations required for a true measure of entanglement. Since

the monogamy relations severely limit the amount of entanglement sharable between the

different parts of an arbitrarily partitioned system [43] this should imply a truly quantum

nature of the correlations measured in the holographic computation of the MI. In [15],

using numerical methods to compute a true measure of entanglement such as negativity, it

has been found that the entanglement between disjoint intervals in spin chains at criticality

also showed a crossover from pure algebraic decay to pure exponential decay when a critical

ratio between the separation and the size of the intervals was reached.

Finally, we feel that the use of a pertinent metric in the AdS space built from the

MERA induced AdS/CFT correspondence may be exploited also as a way to look for

alternative and- hopefully- more powerful ways of optimizing MERA tensor networks.

A Quantum correlators and MI in the rotating BTZ background

In this appendix we compute the MI and quantum correlations between two disjoint inter-

vals of the same size l when the background metric is a rotating BTZ black hole.

When the distance between the two intervals is small enough, the geodesic of minimal

length is L
(con)
A∪B = L(u1, v2) + L(v1, u2); using (3.13), one gets

I(A:B) =
c

3
log

[
sinh2 (πTL̺1)

sinh (πTL̺2) sinh (πTL̺3)

sinh2 (πTR̺1)

sinh (πTR̺2) sinh (πTR̺3)

]
, (A.1)

where ̺1 ≡ |u1 − v1| = |u2 − v2| = l , ̺2 ≡ |u2 − v1| = d and ̺3 ≡ |u1 − v2| = 2l + d . In

equation (A.1), the event horizon is located at z+ = 1/r+ = l and, upon introducing the

two variables zL = 1/(r+ + r−) and zR = 1/(r+ − r−) such that zL < z+ < zR, one is able

to define the two temperatures TL = 1/2πzL and TR = 1/2πzR (figure 5).

For the near extremal BTZ black hole, i.e., for a black hole in which Mℓ & J (r+ & r−,

zR → ∞), equation (A.1) may be written as,

I(A:B) =
c

3
log

(
x

1 − x

)
+
c

3
log

[
sinh2 (πTL̺1)

sinh (πTL(πTL̺2) sinh (πTL̺3)

]
. (A.2)

One sees from equation (A.2) that the decoupling of the right and left moving sectors

induced by the presence of two horizons, plus the near extremality condition of the spinning
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Figure 5. Characteristic length scales zR and zL of the rotating BTZ black hole background. The

event horizon z+ lies between zL < z+ < zR (thin dotted line between zL and zR). Top. Geodesic

connecting the two closest boundary points of the intervals A and B used in the computation of

eq. (A.4). Bottom: Geodesic L
(con)
A∪B

= L(u2, v2) + L(v1, u2) used in the computation of eq. (A.2).

black hole, yields an expression for the MI which decomposes in two terms: one — identical

to (1.14) — depends only on c and the conformal ratio x- and a second identical to (4.1).

It is easy to convince oneself that equation (4.9) when T = TL reproduces the second term

of (A.2). As a result, the MI of two disjoint intervals in a finite system of total length L

may be written as,

I(A:B) =
2c

3
log

(
x

1 − x

)
+
c

3
log

(
θν(i|u1 − v2|TL |τ) θν(i|u2 − v1|TL |τ)
θν(i|u1 − v1|TL |τ) θν(i|u2 − v2|TL |τ)

)
, (A.3)

with τ = iLTL.

For the rotating extremal BTZ black hole, numerical simulations show that 1/|τ |
weakly affects the location of the transition point x0 for the MI (figure 4). Furthermore, it

appears from our results and those presented in [19], that the MI is parametrically small

at x0. As a result, due to the inequality (1.11), one should expect also here a transition

for the quantum correlations.

For the rotating BTZ black hole, the behavior of the quantum correlations between

points located in different disjoint intervals is given by,

〈O(xA)O(xB)〉 ∼
[
βLβR

π2
sinh

(
π|xA − xB|

βL

)
sinh

(
π|xA − xB |

βR

)]−2∆

. (A.4)
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When the near extremality condition is satisfied, i.e., when r+ & r−, so βR → ∞, the

two point correlations behave as,

〈O(xA)O(xB)〉 ∼
(

1

|xA − xB |

)2∆ (
2π

βL

)2∆

exp

(
−2π∆|xA − xB |

βL

)
. (A.5)

Eq. (A.5) shows the existence of a crossover from pure algebraic decay to pure expo-

nential decay of the quantum correlations as µ = |xA − xB |/z+ increases.
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