6 research outputs found

    Photophysique des molĂ©cules polycycliques aromatiques hydrogĂ©nĂ©es d'intĂ©rĂȘt interstellaire avec l'expĂ©rience PIRENEA

    Get PDF
    One of the interesting discoveries of infrared astronomy is the ubiquitous presence of polycyclic aromatic hydrocarbons (PAHs) in interstellar and circumstellar environments. These macromolecules play a key role in the physics and chemistry of the interstellar medium (ISM). However, despite a lot of observational, laboratory and modelling studies, no definite identification of individual species has been possible yet. The identification process requires both an understanding of the nature of these large carbon molecules, which is driven by their formation and further evolution under the action of UV photodissociation and chemistry, and the search for specific spectroscopic fingerprints. These subjects are experimentally approached in this work,taking advantage of the PIRENEA set-up dedicated to astrochemistry. In the first part of this thesis a study of the photodissociation cascade of several medium-sized PAHs isolated in the ion trap of PIRENEA is performed. The aim of this study is to provide information on both destruction of PAHs by UV radiation and formation channels of small hydrocarbons and carbon clusters through destruction of a larger precursor. An inventory of the formed species is made and the main fragmentation patterns are identified. The second part of the thesis focuses on the visible spectroscopy of different PAH cations and dehydrogenated derivatives. Multiphoton dissociation spectroscopy is performed to measure the electronic spectra of these species. The experimental results are interpreted with the help of theoretical spectra calculated in the frame of the time-dependent density functional theory and laboratory data obtained in rare-gas matrices. The photophysics of the laser-irradiated ions is also modelled to derive, for some of the studied species, the absorption cross-sections of the measured electronic transitions. The purpose of this second study is to obtain gas-phase spectroscopic data on different ionised PAHs and derivatives, that can be useful for the pre-selection of the most promising candidates for some of the diffuse interstellar bands, a set of absorption bands observed in the ISM since almost a century but still unidentified.Une des dĂ©couvertes majeures faites par l'astronomie infrarouge est la prĂ©sence de molĂ©cules polycycliques aromatiques hydrogĂ©nĂ©es (PAH) dans les milieux interstellaires et circumstellaires. Ces macromolĂ©cules jouent un rĂŽle essentiel dans la physique et chimie du milieu interstellaire (MIS). Cependant aucune espĂšce individuelle n'a pu ĂȘtre identifiĂ©e jusqu'Ă  prĂ©sent malgrĂ© de nombreuses Ă©tudes observationnelles, des travaux de modĂ©lisation et des expĂ©riences dĂ©diĂ©es en laboratoire. Progresser dans cette identification nĂ©cessite de caractĂ©riser la nature de ces PAH qui est conditionnĂ©e par les processus de formation et d'Ă©volution par photodissociation UV et rĂ©activitĂ© chimique. Il s'agit ensuite d'obtenir des signatures spectroscopiques spĂ©cifiques. Ces sujets sont abordĂ©s expĂ©rimentalement dans ce travail en utilisant l'expĂ©rience PIRENEA dĂ©diĂ©e Ă  l'Ă©tude de la physico-chimie interstellaire. Dans la premiĂšre partie de cette thĂšse, j'ai mesurĂ© la photodissociation de ces espĂšces isolĂ©es dans le piĂšge Ă  ions de PIRENEA. L'objectif scientifique de cette Ă©tude est d'apporter des informations sur le processus de destruction des PAH par irradiation UV-visible et d'Ă©valuer leur contribution Ă  la formation de petits hydrocarbures et d'agrĂ©gats carbonĂ©s dans le MIS. Un inventaire des espĂšces produites par photodissociation a Ă©tĂ© fait pour chacune des molĂ©cules considĂ©rĂ©es et les principales voies de dissociation ont Ă©tĂ© identifiĂ©es. Dans la deuxiĂšme partie du travail, je prĂ©senterai une Ă©tude sur la spectroscopie visible de diffĂ©rents cations PAH et dĂ©rivĂ©s dĂ©shydrogĂ©nĂ©s rĂ©alisĂ©e par dissociation multiphotonique. Les rĂ©sultats expĂ©rimentaux ont Ă©tĂ© comparĂ©s Ă  des spectres thĂ©oriques obtenus avec un modĂšle de la thĂ©orie de la fonctionnelle de la densitĂ© et Ă  des donnĂ©es spectroscopiques mesurĂ©es en matrices de gaz rare. Un modĂšle dĂ©crivant la photophysique des ions a Ă©tĂ© utilisĂ© pour dĂ©terminer les sections efficaces d'absorption de certaines espĂšces Ă©tudiĂ©es. Ces donnĂ©es peuvent ĂȘtre utiles pour la prĂ©-sĂ©lection de candidats aux bandes diffuses interstellaires, bandes qui sont observĂ©es en absorption dans le MIS depuis prĂšs d'un siĂšcle et qui restent non identifiĂ©es

    Photophysics of polycyclic aromatic hydrocarbons of interstellar interest with the PIRENEA experiment

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocTOULOUSE-Observ. Midi Pyréné (315552299) / SudocSudocFranceF

    Photodissociation of Pyrene Cations: Structure and Energetics from C<sub>16</sub>H<sub>10</sub><sup>+</sup> to C<sub>14</sub><sup>+</sup> and Almost Everything in Between

    No full text
    The unimolecular dissociation of the pyrene radical cation, C<sub>16</sub>H<sub>10</sub><sup>+‱</sup>, has been explored using a combination of computational techniques and experimental approaches, such as multiple photon absorption in the cold ion trap Piège à Ions pour la Recherche et l’Etude de Nouvelles Espèces Astrochimiques (PIRENEA) and imaging photoelectron photoion coincidence spectrometry (iPEPICO). In total, 22 reactions, involving the fragmentation cascade (H, C<sub>2</sub>H<sub>2</sub>, and C<sub>4</sub>H<sub>2</sub> loss) from the pyrene radical cation down to the C<sub>14</sub><sup>+‱</sup> fragment ion, have been studied using PIRENEA. Branching ratios have been measured for reactions from C<sub>16</sub>H<sub>10</sub><sup>+‱</sup>, C<sub>16</sub>H<sub>8</sub><sup>+‱</sup>, and C<sub>16</sub>H<sub>5</sub><sup>+</sup>. Density functional theory calculations of the fragmentation pathways observed experimentally and postulated theoretically lead to 17 unique structures. One important prediction is the opening of the pyrene ring system starting from the C<sub>16</sub>H<sub>4</sub><sup>+‱</sup> radical. In the iPEPICO experiments, only two reactions could be studied, namely, R1 C<sub>16</sub>H<sub>10</sub><sup>+‱</sup> → C<sub>16</sub>H<sub>9</sub><sup>+</sup> + H (<i>m</i>/<i>z</i> = 201) and R2 C<sub>16</sub>H<sub>9</sub><sup>+</sup> → C<sub>16</sub>H<sub>8</sub><sup>+‱</sup> + H (<i>m</i>/<i>z</i> = 200). The activation energies for these reactions were determined to be 5.4 ± 1.2 and 3.3 ± 1.1 eV, respectively
    corecore