31 research outputs found

    F-actin dynamics regulates mammalian organ growth and cell fate maintenance.

    Get PDF
    BACKGROUND & AIMS: In vitro, several data indicate that cell function can be regulated by the mechanical properties of cells and of the microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by transducing forces into biochemical signals that instruct cell behavior. Among these, the transcriptional coactivators YAP/TAZ recently emerged as key factors mediating multiple responses to actomyosin contractility. However, whether mechanical cues regulate adult liver tissue homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS & RESULTS: Here we show that the F-actin capping protein CAPZ is a critical negative regulator of actomyosin contractility and mechanotransduction. Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased cellular traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small geometry; in vivo, inactivation of Capzb in the adult mouse liver induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unrecognized role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated hepatocyte state and to regulate organ size. More in general, it indicates for the first time a physiological role of mechanotransduction in maintaining tissue homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. A recent advancement in our understanding of these phenomena has been the identification of YAP and TAZ as key factors mediating the biological responses of cells to mechanical signals in vitro. However, whether the mechanical properties of cells and/or the mechanical regulation of YAP/TAZ are relevant for mammalian tissue physiology remains unknown. Here we challenge this issue by genetic inactivation of CAPZ, a protein that regulates the cytoskeleton, i.e. the cells' scaffold by which they sense mechanical cues. We found that inactivation of CAPZ alters cells' and liver tissue's mechanical properties, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals for the maintenance of adult liver homeostasis.This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) Investigator Grant 15307, WCR (Worldwide Cancer Research) Grant 15-1192, CARIPARO Eccellenza Program 2017 and University of Padua BIRD Grant to SD, AIRC ‘Hard ROCK Café’ Fellowship to GS, Marie Sklodowska-Curie Individual Fellowship (796547) to AG, AIRC Special Program Molecular Clinical Oncology ‘5 per mille’ 10016 to SB, UK Medical Research Council and Sackler Foundation Doctoral Training Grant RG70550 to ACL, UK Medical Research Council Career Development Award G1100312/1 and an Isaac Newton Trust Research Grant 17.24(p) to KF

    Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic-co-glycolic Acid Nanoparticles for Oral Colon Targeting

    Get PDF
    The exploitation of curcumin for oral disease treatment is limited by its low solubility, poor bioavailability, and low stability. Surface-functionalized poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) have shown promising results to ameliorate selective delivery of drugs to the gastro-intestinal tract. In this study, curcumin-loaded PLGA NPs (C-PLGA NPs) of about 200 nm were surface-coated with chitosan (CS) for gastro-intestinal mucosa adhesion, wheat germ agglutinin (WGA) for colon targeting or GE11 peptide for tumor colon targeting. Spectrometric and zeta potential analyses confirmed the successful functionalization of the C-PLGA NPs. Real-time label-free assessment of the cell membrane-NP interactions and NP cell uptake were performed by quartz crystal microbalance coupled with supported lipid bilayers and by surface plasmon resonance coupled with living cells. The study showed that CS-coated C-PLGA NPs interact with cells by the electrostatic mechanism, while both WGA- and GE11-coated C-PLGA NPs interact and are taken up by cells by specific active mechanisms. In vitro cell uptake studies corroborated the real-time label-free assessment by yielding a curcumin cell uptake of 7.3 ± 0.3, 13.5 ± 1.0, 27.3 ± 4.9, and 26.0 ± 1.3 μg per 104 HT-29 cells for noncoated, CS-, WGA-, and GE11-coated C-PLGA NPs, respectively. Finally, preliminary in vivo studies showed that the WGA-coated C-PLGA NPs efficiently accumulate in the colon after oral administration to healthy Balb/c mice. In summary, the WGA- and GE11-coated C-PLGA NPs displayed high potential for application as active targeted carriers for anticancer drug delivery to the colon.Peer reviewe

    Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents

    Get PDF
    Voltammetry of microparticles is applied to characterise and to identify solid analytes of interest in the field of cultural heritage. Nafion® is used for the immobilisation of solid microparticles onto the surface of a glassy carbon electrode by exploiting the deposition onto the electrode surface of a micro-volume of a suspension of the microsample in polymeric solution. Cyclic voltammetry and square wave voltammetry are applied to characterise and to identify the microparticles immobilised in the Nafion® coating. The analyte studied in this work is Prussian Blue as a typical inorganic pigment, with a relatively simple electrochemical behaviour. The proposed method is applied to a sample of Venetian marmorino plaster. The performance of Nafion® for this analysis is compared with that of the polymer Paraloid B72

    Algebraic-Trigonometric Pythagorean-Hodograph space curves

    No full text
    We introduce a new class of Pythagorean-Hodograph (PH) space curves - called Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) space curves - that are defined over a six-dimensional space mixing algebraic and trigonometric polynomials. After providing a general definition for this new class of curves, their quaternion representation is introduced and the fundamental properties are discussed. Then, as previously done with their quintic polynomial counterpart, a constructive approach to solve the first-order Hermite interpolation problem in ℝ3is provided. Comparisons with the polynomial case are illustrated to point out the greater flexibility of ATPH curves with respect to polynomial PH curves

    Development of a microfluidic approach for the real-time analysis of extrinsic TGF-\u3b2 signalling

    No full text
    Autocrine and paracrine signalling are traditionally difficult to study due to the sub-micromolar concentrations involved. This has proven to be especially limiting in the study of embryonic stem cells that rely on such signalling for viability, self-renewal, and proliferation. Microfluidics allows to achieve local concentrations of ligands representative of the in vivo stem cell niche, gaining more precise control over the cell microenvironment, as well as to manipulate ligands availability with high temporal resolution and minimal amount of reagents. Here we developed a microfluidics-based system for monitoring the dynamics of TGF-\u3b2 pathway activity by means of a SMAD2/3-dependent luciferase reporter. We first validated our system by showing dose-dependent transcriptional activation. We then tested the effects of pulsatile stimulation and delayed inhibition of TGF-\u3b2 activity on signalling dynamics. Finally, we show that our microfluidic system, unlike conventional culture systems, can detect TGF-\u3b2 ligands secreted in the conditioned medium from hESCs

    Human Amniotic Suspension Allograft Improves Pain and Function in Knee Osteoarthritis: A Prospective Not Randomized Clinical Pilot Study

    No full text
    Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of joints. Among various cell therapies, mesenchymal stem cell (MSC) therapy appears to provide encouraging results. Human amniotic suspension allografts (HASA) have anti-inflammatory and chondroregenerative potential and represent a promising treatment strategy. The purpose of the present study was to prospectively assess the safety, clinical effectiveness, and feasibility of intra-articular injections of human amniotic suspension allograft (HASA) in unilateral knee OA in order to assess the improvement of symptoms and delay the necessity for invasive surgical procedures. A total of 25 symptomatic patients, affected by knee OA were treated with 3 mL of HASA. Clinical evaluations before the treatment and after 3, 6, and 12 months were performed through International Knee Documentation Committee (IKDC) score and Visual Analogue Scale (VAS) scores. Adverse events were recorded. No severe complications were noted during the treatment and the follow-up period. A statistically significant improvement from basal evaluation to the 3-, 6-, and 12-month follow-up visits was observed. The present pilot study indicates that a single intra-articular injection of HASA seems safe and able to provide positive clinical outcomes, potentially offering a new minimally invasive therapeutic option for patients with knee OA
    corecore