3,503 research outputs found

    The NextGen Model Atmosphere grid: II. Spherically symmetric model atmospheres for giant stars with effective temperatures between 3000 and 6800~K

    Full text link
    We present the extension of our NextGen model atmosphere grid to the regime of giant stars. The input physics of the models presented here is nearly identical to the NextGen dwarf atmosphere models, however spherical geometry is used self-consistently in the model calculations (including the radiative transfer). We re-visit the discussion of the effects of spherical geometry on the structure of the atmospheres and the emitted spectra and discuss the results of NLTE calculations for a few selected models.Comment: ApJ, in press (November 1999), 13 pages, also available at http://dilbert.physast.uga.edu/~yeti/PAPERS and at ftp://calvin.physast.uga.edu/pub/preprints/NG-giants.ps.g

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl

    First observation of 55,56Zn

    Full text link
    In an experiment at the SISSI/LISE3 facility of GANIL, the most proton-rich zinc isotopes 55,56Zn have been observed for the first time. The experiment was performed using a high-intensity 58Ni beam at 74.5 MeV/nucleon impinging on a nickel target. The identification of 55,56Zn opens the way to 54Zn, a good candidate for two-proton radioactivity according to theoretical predictions.Comment: 2 pages, 1 figure, accepted for publication in Eur. Phys. J.

    Decay of proton-rich nuclei between 39Ti and 49Ni

    Full text link
    Decay studies of very neutron-deficient nuclei ranging from 39Ti to 49Ni have been performed during a projectile fragmentation experiment at the GANIL/LISE3 separator. For all nuclei studied in this work, 39,40Ti, 42,43Cr, 46Mn, 45,46,47Fe and 49Ni, half-lives and decay spectra have been measured. In a few cases, gamma coincidence measurements helped to successfully identify the initial and final states of transitions. In these cases, partial decay scheme are proposed. For the most exotic isotopes, 39Ti, 42Cr, 45Fe and 49Ni, which are candidates for two-proton radioactivity from the ground state, no clear evidence of this process is seen in our spectra and we conclude rather on a delayed particle decay.Comment: 12 pages, 15 figures, submitted for publication in Eur. Phys. J.

    Characterizing CO Fourth Positive Emission in Young Circumstellar Disks

    Full text link
    Carbon Monoxide is a commonly used IR/sub-mm tracer of gas in protoplanetary disks. We present an analysis of ultraviolet CO emission in {HST}-COS spectra for 12 Classical T Tauri stars. Several ro-vibrational bands of the CO A^1\Pi - X^1\Sigma^+ (Fourth Positive) electronic transition system are spectrally resolved from emission of other atoms and H_2. The CO A^1\Pi v'=14 state is populated by absorption of Ly\alpha photons, created at the accretion column on the stellar surface. For targets with strong CO emission, we model the Ly\alpha radiation field as an input for a simple fluorescence model to estimate CO rotational excitation temperatures and column densities. Typical column densities range from N_{CO} = 10^{18} - 10^{19} cm^{-2}. Our measured excitation temperatures are mostly below T_{CO} = 600 K, cooler than typical M-band CO emission. These temperatures and the emission line widths imply that the UV emission originates in a different population of CO than that which is IR-emitting. We also find a significant correlation between CO emission and the disk accretion rate M_{acc} and age. Our analysis shows that ultraviolet CO emission can be a useful diagnostic of CTTS disk gas

    The Nature of the Secondary Star in the Black Hole X-Ray Transient V616 Mon (=A0620-00)

    Full text link
    We have used NIRSPEC on Keck II to obtain KK-band spectroscopy of the low mass X-ray binary V616 Mon (= A0620-00). V616 Mon is the proto-typical soft x-ray transient containing a black hole primary. As such it is important to constrain the masses of the binary components. The modeling of the infrared observations of ellipsoidal variations in this system lead to a derived mass of 11.0 M_{\sun} for the black hole. The validity of this derivation has been called into question due to the possiblity that the secondary star's spectral energy distribution is contaminated by accretion disk emission (acting to dilute the variations). Our new KK-band spectrum of V616 Mon reveals a late-type K dwarf secondary star, but one that has very weak 12^{\rm 12}CO absorption features. Comparison of V616 Mon with SS Cyg leads us to estimate that the accretion disk supplies only a small amount of KK-band flux, and the ellipsoidal variations are not seriously contaminated. If true, the derived orbital inclination of V616 Mon is not greatly altered, and the mass of the black hole remains large. A preliminary stellar atmosphere model for the KK-band spectrum of V616 Mon reveals that the carbon abundance is approximately 50% of the solar value. We conclude that the secondary star in V616 Mon has either suffered serious contamination from the accretion of supernova ejecta that created the black hole primary, or it is the stripped remains of a formerly more massive secondary star, one in which the CNO cycle had been active.Comment: 20 pages, 5 figure

    On the discovery of doubly-magic 48^{48}Ni

    Full text link
    The paper reports on the first observation of doubly-magic Nickel-48 in an experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42 isotopes were observed. This opens the possibility to search for two-proton emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Low State, Phase-Resolved IR Spectroscopy of VV Puppis

    Full text link
    We present phase-resolved low resolution JHKJHK and higher resolution KK-band spectroscopy of the polar VV Pup. All observations were obtained when VV Pup was in a low accretion state having a K magnitude near 15. The low resolution observations reveal cyclotron emission in the JJ band during some phases, consistent with an origin near the active 30.5 MG pole on the white dwarf. The secondary in VV Pup appears to be a normal M7V star and we find that the HH and KK band fluxes are entirely due to this star at all orbital phases during the low accretion state. We use our higher resolution Keck spectroscopy to produce the first KK-band radial velocity curve for VV Pup. Our orbital solution yields K2K_2=414±27\pm27 km sec1^{-1} and leads to mass estimates of M1_1=0.73±\pm0.05 M_{\odot} and M2_2=0.10±\pm0.02 M_{\odot}. We find that the mass accretion rates during the normal low states of the polars VV Pup, EF Eri, and EQ Cet are near 1013^{-13} M_{\odot} yr1^{-1}. The fact that \.M is not zero in low state polars indicates active secondary stars in these binary systems, including the sub-stellar donor star present in EF Eri.Comment: Accepted in Astronomical Journal 5 figure

    Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system

    Get PDF
    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape
    corecore