299 research outputs found

    Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models

    Get PDF
    This paper proposes the estimation of high return period quantiles using upper bounded distribution functions with Systematic and additional Non-Systematic information. The aim of the developed methodology is to reduce the estimation uncertainty of these quantiles, assuming the upper bound parameter of these distribution functions as a statistical estimator of the Probable Maximum Flood (PMF). Three upper bounded distribution functions, firstly used in Hydrology in the 90's (referred to in this work as TDF, LN4 and EV4), were applied at the Jucar River in Spain. Different methods to estimate the upper limit of these distribution functions have been merged with the Maximum Likelihood (ML) method. Results show that it is possible to obtain a statistical estimate of the PMF value and to establish its associated uncertainty. The behaviour for high return period quantiles is different for the three evaluated distributions and, for the case study, the EV4 gave better descriptive results. With enough information, the associated estimation uncertainty for very high return period quantiles is considered acceptable, even for the PMF estimate. From the robustness analysis, the EV4 distribution function appears to be more robust than the GEV and TCEV unbounded distribution functions in a typical Mediterranean river and Non-Systematic information availability scenario. In this scenario and if there is an upper limit, the GEV quantile estimates are clearly unacceptable

    Assessing the risk of vehicle instability due to flooding

    Full text link
    [EN] Flooding can destabilize vehicles which might, in turn, exacerbate the negative effects of floods when vehicles are swept away by flows, and lead to economic loss and fatalities. In order to suitably manage floods, it is necessary to determine the risk of instability to which vehicles in flood-prone areas are subject. This paper develops a methodology to estimate this risk based on the characteristics of floods and the vehicle fleet located in potential flood-prone areas. This risk is determined by the statistical integral of the instability hazard and vehicles' vulnerability. The instability hazard was established by a stability function of partially submerged cars and flood frequency, while vulnerability was calculated by combining the susceptibility and exposure of cars. Our methodology was applied in the towns of Alfafar and Massanassa (Spain). It found that the annualized instability risk due to flooding could be relatively high on most streets and roads, with values reaching the order of 8.4 at-risk vehicles per hectare/year.Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS (Colombia) call, Grant/Award Number: 728-2015; Spanish Ministry of Science and Innovation through the research project TETISCHANGE, Grant/Award Number: RTI2018-093717-B-I00Bocanegra, RA.; Francés, F. (2021). Assessing the risk of vehicle instability due to flooding. Journal of Flood Risk Management. 14(4):1-15. https://doi.org/10.1111/jfr3.12738S11514

    Review and analysis of vehicle stability models during floods and proposal for future improvements

    Full text link
    This is the peer reviewed version of the following article: Bocanegra, RA, Vallés-Morán, FJ, Francés, F. Review and analysis of vehicle stability models during floods and proposal for future improvements. J Flood Risk Management. 2020; 13 ( Suppl. 1):e12551, which has been published in final form at https://doi.org/10.1111/jfr3.12551. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Flood water can affect vehicles significantly, which in turn can increase the negative effects of floods as vehicles are washed away by the flow and become a form of debris. In cities, most fatalities during floods occur inside vehicles. Consequently, it is necessary to establish thresholds for vehicle stability during this type of event to provide information necessary for flood risk management. This article analyses the available stability models developed over recent years to determine such thresholds. The stability models were grouped according to the way in which they approached car watertightness and the stability thresholds proposed by each of them were compared. It was found that these thresholds vary over a relatively wide range. Additionally, the experimental data were compared with the results provided by these studies leading to the conclusion that several of the stability models analysed do not fit measured data well. New research is required to overcome the simplifications made by the state-of-the-art models and to try to standardise the decision criteria which should be adopted to define stability thresholds for vehicles of different characteristics.Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS (Colombia) call 728-2015; Spanish Ministry of Science and Innovation through the research project TETISCHANGE, Grant/Award Number: RTI2018-093717-B-I00.Bocanegra, RA.; Vallés-Morán, FJ.; Francés, F. (2020). Review and analysis of vehicle stability models during floods and proposal for future improvements. Journal of Flood Risk Management. 13:1-13. https://doi.org/10.1111/jfr3.12551S11313Arrighi, C., Alcèrreca-Huerta, J. C., Oumeraci, H., & Castelli, F. (2015). Drag and lift contribution to the incipient motion of partly submerged flooded vehicles. Journal of Fluids and Structures, 57, 170-184. doi:10.1016/j.jfluidstructs.2015.06.010Arrighi C. Castelli F. &Oumeraci H.(2016). Effects of flow orientation on the onset of motion of flooded vehicles. InProceedings of the 4th IAHR Europe Congress. Liege DOI:https://doi.org/10.1201/b21902-140.Arrighi, C., Huybrechts, N., Ouahsine, A., Chassé, P., Oumeraci, H., & Castelli, F. (2016). Vehicles instability criteria for flood risk assessment of a street network. Proceedings of the International Association of Hydrological Sciences, 373, 143-146. doi:10.5194/piahs-373-143-2016Bonham A. J. &Hattersley R. T.(1967).Low level causeways. WRL Report No. 100. University of New South Wales. Sydney Australia.Cox R. J. Shand T. D. &Blacka M. J.(2010). Appropriate safety criteria for people in floods.Australian Rainfall and Runoff. WRL Research Report 240. Report for Institution of Engineers Australia.DROBOT, S., BENIGHT, C., & GRUNTFEST, E. (2007). Risk factors for driving into flooded roads. Environmental Hazards, 7(3), 227-234. doi:10.1016/j.envhaz.2007.07.003FitzGerald, G., Du, W., Jamal, A., Clark, M., & Hou, X.-Y. (2010). Flood fatalities in contemporary Australia (1997-2008). Emergency Medicine Australasia, 22(2), 180-186. doi:10.1111/j.1742-6723.2010.01284.xGordon A. D. &Stone P. B.(1973).Car stability on road causeways. WRL Technical Report No. 73/12. University of New South Wales. Sydney Australia.Jonkman, S. N., & Kelman, I. (2005). An Analysis of the Causes and Circumstances of Flood Disaster Deaths. Disasters, 29(1), 75-97. doi:10.1111/j.0361-3666.2005.00275.xKellar, D. M. M., & Schmidlin, T. W. (2012). Vehicle-related flood deaths in the United States, 1995-2005. Journal of Flood Risk Management, 5(2), 153-163. doi:10.1111/j.1753-318x.2012.01136.xKeller R. J. &Mitsch B.(1993).Safety aspects of the design of roadways as floodways. Research Report No. 69 Urban Water Research Association of Australia.Kramer, M., Terheiden, K., & Wieprecht, S. (2016). Safety criteria for the trafficability of inundated roads in urban floodings. International Journal of Disaster Risk Reduction, 17, 77-84. doi:10.1016/j.ijdrr.2016.04.003Martínez-Gomariz, E., Gómez, M., Russo, B., & Djordjević, S. (2016). Stability criteria for flooded vehicles: a state-of-the-art review. Journal of Flood Risk Management, 11, S817-S826. doi:10.1111/jfr3.12262Martínez-Gomariz, E., Gómez, M., Russo, B., & Djordjević, S. (2017). A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding. Urban Water Journal, 14(9), 930-939. doi:10.1080/1573062x.2017.1301501Mens M. J. Erlich M. Gaume E. Lumbroso D. Moreda Y. Van der VatM. &Versini P. A.(2008).Frameworks for flood event management. Report Number T19‐07‐03. WL Delft Hydraulics. Delft Netherlands.Moore, K. A., & Power, R. K. (2002). Safe Buffer Distances for Offstream Earth Dams. Australasian Journal of Water Resources, 6(1), 1-15. doi:10.1080/13241583.2002.11465206Oshikawa H. &Komatsu T.(2014). Study on the risk evaluation for a vehicular traffic in a flood situation.Proceedings of the 19th IAHR‐APD Congress Hanoi Vietnam.Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D: Transport and Environment, 55, 67-81. doi:10.1016/j.trd.2017.06.020Shand T. Cox R. Blacka M. &Smith G.(2011).Australian Rainfall and Runoff (AR&R). Appropriate safety criteria for vehicles. Australian rainfall and runoff revision project 10: Report Number: P10/S2/020. Sidney Australia.Shu, C., Xia, J., Falconer, R. A., & Lin, B. (2011). Incipient velocity for partially submerged vehicles in floodwaters. Journal of Hydraulic Research, 49(6), 709-717. doi:10.1080/00221686.2011.616318Smith G. P. Davey E. K. &Cox R. J.(2014).Flood hazard. WRL Technical Report 2014/07. University of New South Wales. Sydney Australia.Smith G. P. Modra B. D. Tucker T. A. &Cox R. J.(2017).Vehicle stability testing for flood flows. WRL Technical Report 2017/07. University of New South Wales. Sydney Australia.Suarez, P., Anderson, W., Mahal, V., & Lakshmanan, T. R. (2005). Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transportation Research Part D: Transport and Environment, 10(3), 231-244. doi:10.1016/j.trd.2005.04.007Teo, F. Y., Xia, J., Falconer, R. A., & Lin, B. (2012). Experimental studies on the interaction between vehicles and floodplain flows. International Journal of River Basin Management, 10(2), 149-160. doi:10.1080/15715124.2012.674040Versini, P.-A., Gaume, E., & Andrieu, H. (2010). Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas. Natural Hazards and Earth System Sciences, 10(4), 805-817. doi:10.5194/nhess-10-805-2010Versini, P.-A., Gaume, E., & Andrieu, H. (2010). Assessment of the susceptibility of roads to flooding based on geographical information – test in a flash flood prone area (the Gard region, France). Natural Hazards and Earth System Sciences, 10(4), 793-803. doi:10.5194/nhess-10-793-2010Xia, J., Falconer, R. A., Xiao, X., & Wang, Y. (2013). Criterion of vehicle stability in floodwaters based on theoretical and experimental studies. Natural Hazards, 70(2), 1619-1630. doi:10.1007/s11069-013-0889-2Xia, J., Teo, F. Y., Lin, B., & Falconer, R. A. (2010). Formula of incipient velocity for flooded vehicles. Natural Hazards, 58(1), 1-14. doi:10.1007/s11069-010-9639-

    Hydrological post-processing based on approximate Bayesian computation (ABC)

    Full text link
    [EN] This study introduces a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be difficult to calculate the likelihood itself in hydrological modelling, specially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. The aim is to show that the conditional predictive distribution is qualitatively similar produced by the exact predictive (MCMC post-processor) or the approximate predictive (ABC post-processor). We also use MCMC post-processor as a benchmark to make results more comparable with the proposed method. We test the ABC post-processor in two scenarios: (1) the Aipe catchment with tropical climate and a spatially-lumped hydrological model (Colombia) and (2) the Oria catchment with oceanic climate and a spatially-distributed hydrological model (Spain). The main finding of the study is that the approximate (ABC post-processor) conditional predictive uncertainty is almost equivalent to the exact predictive (MCMC post-processor) in both scenarios.This study was partially supported by the Departamento del Huila Scholarship Program No. 677 (Colombia) and Colciencias, by the Spanish Research Project TETIS-MED (ref. CGL2014-58127-C3-3-R) and TETIS-CHANGE (ref.RTI2018-093717-B-I00). Also, G. Adelfio's research has been supported by the national grant of the Italian Ministry of Education University and Research (MIUR) for the PRIN-2015 program, "Complex space-time modelling and functional analysis for probabilistic forecast of seismic events'. The authors also wish to thank the editor and the two anonymous reviewers for their thoughtful comments for the revision of the manuscript.Romero-Cuellar, J.; Abbruzzo, A.; Adelfio, G.; Francés, F. (2019). Hydrological post-processing based on approximate Bayesian computation (ABC). Stochastic Environmental Research and Risk Assessment. 33(7):1361-1373. https://doi.org/10.1007/s00477-019-01694-yS13611373337Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035Blackwell D, Dubins L (1962) Merging of opinions with increasing information. Ann Math Stat 33(3):882–886Bogner K, Liechti K, Zappa M (2016) Post-processing of stream flows in Switzerland with an emphasis on low flows and floods. Water 8(4):115Brown JD, Seo D-J (2010) A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts. J Hydrometeorol 11(3):642–665Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298(1):242–266Coccia G, Todini E (2011) Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Syst Sci 15:3253–3274Csillery K, Francois O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (abc). Methods Ecol Evol 3:475–479Diaconis P, Freedman D (1986) On the consistency of bayes estimates. Ann Stat 14(1):1–26Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Environ Res Risk Assess 24(6):809–820Drovandi CC, Pettitt AN (2011) Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput Stat Data Anal 55(9):2541–2556Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375Fearnhead P, Prangle D (2012) Constructing summary statistics for approximate bayesian computation: semi-automatic approximate Bayesian computation. J R Stat Soc Ser B Stat Methodol 74(3):419–474Fenicia F, Kavetski D, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: empirical analysis of fundamental properties. Water Resour Res 54:3958–3987Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332(1):226–240Frazier DT, Maneesoonthorn W, Martin GM, McCabe BP (2019) Approximate Bayesian forecasting. Int J Forecast 35(2):521–539Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC, Boca RatonGlahn HR, Lowry DA (1972) The use of model output statistics (mos) in objective weather forecasting. J Appl Meteorol 11(8):1203–1211Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and nse performance criteria: implications for improving hydrological modelling. J Hydrol 377(1):80–91Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242Kavetski D, Fenicia F, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: theory and comparison to existing applications. Water Resour Res 54:4059–4083Khajehei S, Moradkhani H (2017) Towards an improved ensemble precipitation forecast: a probabilistic post-processing approach. J Hydrol 546:476–489Klein B, Meissner D, Kobialka H-U, Reggiani P (2016) Predictive uncertainty estimation of hydrological multi-model ensembles using pair-copula construction. Water 8(4):125Krzysztofowicz R, Kelly KS (2000) Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 36(11):3265–3277Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267–1277Li B, Liang Z, He Y, Hu L, Zhao W, Acharya K (2017) Comparison of parameter uncertainty analysis techniques for a topmodel application. Stoch Environ Res Risk Assess 31(5):1045–1059Liang Z, Chang W, Li B (2012) Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stoch Environ Res Risk Assess 26(5):721–730Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B Methodol 34(1):1–41Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43(7):W07401Madadgar S, Moradkhani H (2014) Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging. Water Resour Res 50(12):9586–9603Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain monte carlo without likelihoods. Proc Natl Acad Sci 100(26):15324–15328Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40(2):W02501Mengersen KL, Pudlo P, Robert CP (2013) Bayesian computation via empirical likelihood. Proc Natl Acad Sci 110(4):1321–1326Montanari A, Brath A (2004) A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 40:W01106. https://doi.org/10.1029/2003WR002540Montanari A, Grossi G (2008) Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour Res 44:W00B08. https://doi.org/10.1029/2008WR006897Montanari A, Koutsoyiannis D (2012) A blueprint for process-based modeling of uncertain hydrological systems. Water Resour Res 48(9):W09555Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900Nott DJ, Marshall L, Brown J (2011) Generalized likelihood uncertainty estimation (glue) and approximate Bayesian computation: what’s the connection? Water Resour Res 48(12):W12602Price LF, Drovandi CC, Lee A, Nott DJ (2018) Bayesian synthetic likelihood. J Comput Graph Stat 27(1):1–11Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Population growth of human y chromosomes: a study of y chromosome microsatellites. Mol Biol Evol 16(12):1791–1798R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaRaftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133(5):1155–1174Reichert P, Langhans SD, Lienert J, Schuwirth N (2015) The conceptual foundation of environmental decision support. J Environ Manag 154:316–332Robert CP (2016) Approximate bayesian computation: A survey on recent results. In: Cools R, Nuyens D (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer, Cham, pp 185–205Romero-Cuéllar J, Buitrago-Vargas A, Quintero-Ruiz T, Francés F (2018) Modelling the potential impacts of climate change on the hydrology of the Aipe river basin in Huila, Colombia. Ribagua 5(1):63–78Schefzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat Sci 28(4):616–640Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46(10):W10531Schoups G, van de Giesen NC, Savenije HHG (2008) Model complexity control for hydrologic prediction. Water Resour Res 44(12):W00B03Shafii M, Tolson B, Matott LS (2014) Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study. Stoch Environ Res Risk Assess 28(6):1493–1510Sikorska AE, Montanari A, Koutsoyiannis D (2015) Estimating the uncertainty of hydrological predictions through data-driven resampling techniques. J Hydrol Eng 20(1):A4014009Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci 104(6):1760–1765Solomatine DP, Shrestha DL (2009) A novel method to estimate model uncertainty using machine learning techniques. Water Resour Res 45:W00B11. https://doi.org/10.1029/2008WR006839Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145(2):505–518Thomas H (1981) Improved methods for national water assessment, water resources contract: WR15249270. Technical report, Harvard University, CambridgeThyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45:W00B14. https://doi.org/10.1029/2008WR006825Tian Y, Nearing GS, Peters-Lidard CD, Harrison KW, Tang L (2016) Performance metrics, error modeling, and uncertainty quantification. Mon Weather Rev 144(2):607–613Todini E (2008) A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 6(2):123–137Tran M-N, Nott DJ, Kohn R (2017) Variational bayes with intractable likelihood. J Comput Graph Stat 26(4):873–882Turner BM, Van Zandt T (2012) A tutorial on approximate Bayesian computation. J Math Psychol 56(2):69–85van Oijen M (2017) Bayesian methods for quantifying and reducing uncertainty and error in forest models. Curr For Rep 3(4):269–280Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Syst Sci 13(2):229–246Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(1):W01411Vrugt JA, Sadegh M (2013) Toward diagnostic model calibration and evaluation: approximate Bayesian computation. Water Resour Res 49:4335–4345Waerden BVD (1953) Order tests for the two-sample problem and their power. Indag Math Proc 56:80Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19(6):378–387Wang Q, Robertson D, Chiew FS (2009) A bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45(5):W05407Weerts AH, Winsemius HC, Verkade JS (2011) Estimation of predictive hydrological uncertainty using quantile regression: examples from the national flood forecasting system (england and wales). Hydrol Earth Syst Sci 15(1):255–265Wentao L, Qingyun D, Chiyuan M, Aizhong Y, Wei G, Zhenhua D (2017) A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip Rev Water 4(6):e1246Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the river thames, UK. Water Resour Res 42(2):W02419Woldemeskel F, McInerney D, Lerat J, Thyer M, Kavetski D, Shin D, Tuteja N, Kuczera G (2018) Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol Earth Syst Sci 22:6257–6278. https://doi.org/10.5194/hess-22-6257-2018Ye A, Duan Q, Yuan X, Wood EF, Schaake J (2014) Hydrologic post-processing of MOPEX streamflow simulations. J Hydrol 508:147–156Yoon S, Cho W, Heo J-H, Kim CE (2010) A full bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch Environ Res Risk Assess 24(5):761–770Zhang X, Zhao K (2012) Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour Manag 26(8):2365–2382Zhao L, Duan Q, Schaake J, Ye A, Xia J (2011) A hydrologic post-processor for ensemble streamflow predictions. Adv Geosci 29:51–59Zhu W, Marin JM, Leisen F (2016) A bootstrap likelihood approach to Bayesian computation. Aust N Z J Stat 58(2):227–24

    New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data

    Full text link
    [EN] Stochastic weather generators combined with hydrological models have been proposed for continuous synthetic simulation to estimate return periods of extreme floods. Yet, this approach relies upon the length and spatial distribution of the precipitation input data series, which often are scarce, especially in arid and semiarid regions. In this work, we present a new approach for the estimation of extreme floods based on the continuous synthetic simulation method supported with inputs of (a) a regional study of extreme precipitation to improve the calibration of the weather generator (GWEX), and (b) non-systematic flood information (i.e., historical information and/or palaeoflood records) for the validation of the generated discharges with a fully distributed hydrological model (TETIS). The results showed that this complementary information of extremes allowed for a more accurate implementation of both the weather generator and the hydrological model. This, in turn, improved the flood quantile estimates, especially for those associated with return periods higher than 50 years but also for higher quantiles (up to approximately 500 years). Therefore, it has been proved that continuous synthetic simulation studies focused on the estimation of extreme floods should incorporate a generalized representation of regional extreme rainfall and/or non-systematic flood data, particularly in regions with scarce hydrometeorological records.This research was funded by the Spanish Ministry of Science and Innovation through the research projects TETISCHANGE (RTI2018-093717-B-100) and EPHIMED (CGL2017-86839-C3-1-R), both cofounded with FEDER European funds.Beneyto, C.; Aranda Domingo, JÁ.; Benito, G.; Francés, F. (2020). New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data. Water. 12(11):1-16. https://doi.org/10.3390/w12113174S1161211Stedinger, J. R., & Griffis, V. W. (2008). Flood Frequency Analysis in the United States: Time to Update. Journal of Hydrologic Engineering, 13(4), 199-204. doi:10.1061/(asce)1084-0699(2008)13:4(199)Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based analysis. Hydrological Processes, 23(5), 675-696. doi:10.1002/hyp.7168Stedinger, J. R., & Cohn, T. A. (1986). Flood Frequency Analysis With Historical and Paleoflood Information. Water Resources Research, 22(5), 785-793. doi:10.1029/wr022i005p00785Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R., & Lamontagne, J. R. (2013). A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series. Water Resources Research, 49(8), 5047-5058. doi:10.1002/wrcr.20392Emmanuel, I., Payrastre, O., Andrieu, H., & Zuber, F. (2017). A method for assessing the influence of rainfall spatial variability on hydrograph modeling. First case study in the Cevennes Region, southern France. Journal of Hydrology, 555, 314-322. doi:10.1016/j.jhydrol.2017.10.011Pathiraja, S., Westra, S., & Sharma, A. (2012). Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resources Research, 48(6). doi:10.1029/2011wr010997Grimaldi, S., Nardi, F., Piscopia, R., Petroselli, A., & Apollonio, C. (2021). Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. Journal of Hydrology, 595, 125664. doi:10.1016/j.jhydrol.2020.125664Cameron, D. ., Beven, K. ., Tawn, J., Blazkova, S., & Naden, P. (1999). Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). Journal of Hydrology, 219(3-4), 169-187. doi:10.1016/s0022-1694(99)00057-8Eagleson, P. S. (1972). Dynamics of flood frequency. Water Resources Research, 8(4), 878-898. doi:10.1029/wr008i004p00878Brocca, L., Liersch, S., Melone, F., Moramarco, T., & Volk, M. (2013). Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrology and Earth System Sciences, 17(8), 3159-3169. doi:10.5194/hess-17-3159-2013Cowpertwait, P., Ocio, D., Collazos, G., de Cos, O., & Stocker, C. (2013). Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrology and Earth System Sciences, 17(2), 479-494. doi:10.5194/hess-17-479-2013Boughton, W., & Droop, O. (2003). Continuous simulation for design flood estimation—a review. Environmental Modelling & Software, 18(4), 309-318. doi:10.1016/s1364-8152(03)00004-5Soltani, A., & Hoogenboom, G. (2003). Minimum data requirements for parameter estimation of stochastic weather generators. Climate Research, 25, 109-119. doi:10.3354/cr025109Verdin, A., Rajagopalan, B., Kleiber, W., & Katz, R. W. (2014). Coupled stochastic weather generation using spatial and generalized linear models. Stochastic Environmental Research and Risk Assessment, 29(2), 347-356. doi:10.1007/s00477-014-0911-6Cavanaugh, N. R., Gershunov, A., Panorska, A. K., & Kozubowski, T. J. (2015). The probability distribution of intense daily precipitation. Geophysical Research Letters, 42(5), 1560-1567. doi:10.1002/2015gl063238Furrer, E. M., & Katz, R. W. (2008). Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resources Research, 44(12). doi:10.1029/2008wr007316Evin, G., Favre, A.-C., & Hingray, B. (2018). Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrology and Earth System Sciences, 22(1), 655-672. doi:10.5194/hess-22-655-2018Metzger, A., Marra, F., Smith, J. A., & Morin, E. (2020). Flood frequency estimation and uncertainty in arid/semi-arid regions. Journal of Hydrology, 590, 125254. doi:10.1016/j.jhydrol.2020.125254Zaman, M. A., Rahman, A., & Haddad, K. (2012). Regional flood frequency analysis in arid regions: A case study for Australia. Journal of Hydrology, 475, 74-83. doi:10.1016/j.jhydrol.2012.08.054Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 44(8). doi:10.1029/2007wr006745Benito, G., Sanchez-Moya, Y., Medialdea, A., Barriendos, M., Calle, M., Rico, M., … Machado, M. (2020). Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water, 12(4), 1008. doi:10.3390/w12041008Baker, V. R. (1987). Paleoflood hydrology and extraordinary flood events. Journal of Hydrology, 96(1-4), 79-99. doi:10.1016/0022-1694(87)90145-4Ballesteros-Cánovas, J. A., Sanchez-Silva, M., Bodoque, J. M., & Díez-Herrero, A. (2013). An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain). Water Resources Management, 27(8), 3051-3069. doi:10.1007/s11269-013-0332-1Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154Stedinger, J. R., & Baker, V. R. (1987). Surface water hydrology: Historical and paleoflood information. Reviews of Geophysics, 25(2), 119. doi:10.1029/rg025i002p00119Simón, J. L., Pérez-Cueva, A. J., & Calvo-Cases, A. (2013). Tectonic beheading of fluvial valleys in the Maestrat grabens (eastern Spain): Insights into slip rates of Pleistocene extensional faults. Tectonophysics, 593, 73-84. doi:10.1016/j.tecto.2013.02.026Camarasa Belmonte, A. M., & Segura Beltrán, F. (2001). Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. CATENA, 45(3), 229-249. doi:10.1016/s0341-8162(01)00146-1Llasat, M. C., & Puigcerver, M. (1990). Cold air pools over Europe. Meteorology and Atmospheric Physics, 42(3-4), 171-177. doi:10.1007/bf01314823Herrera, S., Fernández, J., & Gutiérrez, J. M. (2015). Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36(2), 900-908. doi:10.1002/joc.4391Machado, M. J., Medialdea, A., Calle, M., Rico, M. T., Sánchez-Moya, Y., Sopeña, A., & Benito, G. (2017). Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quaternary Science Reviews, 171, 182-198. doi:10.1016/j.quascirev.2017.07.014Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032Papastathopoulos, I., & Tawn, J. A. (2013). Extended generalised Pareto models for tail estimation. Journal of Statistical Planning and Inference, 143(1), 131-143. doi:10.1016/j.jspi.2012.07.001El Libro de la Provincia de Castellonhttp://hdl.handle.net/10234/14914Cunnane, C. (1978). Unbiased plotting positions — A review. Journal of Hydrology, 37(3-4), 205-222. doi:10.1016/0022-1694(78)90017-3Gringorten, I. I. (1963). A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), 813-814. doi:10.1029/jz068i003p00813Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6HAKTANIR, T., & HORLACHER, H. B. (1993). Evaluation of various distributions for flood frequency analysis. Hydrological Sciences Journal, 38(1), 15-32. doi:10.1080/02626669309492637Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1Lamb, R., Faulkner, D., Wass, P., & Cameron, D. (2016). Have applications of continuous rainfall–runoff simulation realized the vision for process‐based flood frequency analysis? Hydrological Processes, 30(14), 2463-2481. doi:10.1002/hyp.10882Benito, G., & Thorndycraft, V. R. (2005). Palaeoflood hydrology and its role in applied hydrological sciences. Journal of Hydrology, 313(1-2), 3-15. doi:10.1016/j.jhydrol.2005.02.002Lam, D., Thompson, C., Croke, J., Sharma, A., & Macklin, M. (2017). Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information. Water Resources Research, 53(3), 2312-2327. doi:10.1002/2016wr019959Fuller, W. E. (1914). Flood Flows. Transactions of the American Society of Civil Engineers, 77(1), 564-617. doi:10.1061/taceat.0002552Applied hydrology. (1968). Journal of Hydrology, 6(2), 224-225. doi:10.1016/0022-1694(68)90169-8Sangal, B. P. (1983). Practical Method of Estimating Peak Flow. Journal of Hydraulic Engineering, 109(4), 549-563. doi:10.1061/(asce)0733-9429(1983)109:4(549)Fathzadeh, A., Jaydari, A., & Taghizadeh-Mehrjardi, R. (2016). Comparison of different methods for reconstruction of instantaneous peak flow data. Intelligent Automation & Soft Computing, 23(1), 41-49. doi:10.1080/10798587.2015.112099

    Sample Uncertainty Analysis of Daily Flood Quantiles Using a Weather Generator

    Full text link
    [EN] The combined use of weather generators (WG) and hydrological models (HM) in what is called synthetic continuous simulation (SCS) has become a common practice for carrying out flood studies. However, flood quantile estimations are far from presenting relatively high confidence levels, which mostly relate to the uncertainty of models¿ input data. The main objective of this paper is to assess how different precipitation regimes, climate extremality, and basin hydrological characteristics impact the uncertainty of daily flood quantile estimates obtained by SCS. A Monte Carlo simulation from 18 synthetic populations encompassing all these scenarios was performed, evaluating the uncertainty of the simulated quantiles. Additionally, the uncertainty propagation of the quantile estimates from the WG to the HM was analyzed. General findings show that integrating the regional precipitation quantile (XT,P) in the WG model calibration clearly reduces the uncertainty of flood quantile estimates, especially those near the regional XT,P. Basin size, climate extremality, and the hydrological characteristics of the basin have been proven not to affect flood quantiles¿ uncertainty substantially. Furthermore, it has been found that uncertainty clearly increases with the aridity of the climate and that the HM is not capable of buffering the uncertainty of flood quantiles, but rather increases it.The authors thank AEMET and the UC for the data provided to carry out this work (Spain02 dataset). This work was supported by the Spanish Ministry of Science and Innovation through the research projects TETISCHANGE (RTI2018-093717-B-100) and TETISPREDICT (PID2022-141631OBI00). Funding for the open-access charge has been provided by Universitat Politècnica de ValènciaBeneyto, C.; Vignes, G.; Aranda Domingo, JÁ.; Francés, F. (2023). Sample Uncertainty Analysis of Daily Flood Quantiles Using a Weather Generator. Water. 15(19):1-16. https://doi.org/10.3390/w15193489116151

    Assessing Anthropogenic Dynamics in Megacities from the Characterization of Land Use/Land Cover Changes: The Bogotá Study Case

    Full text link
    [EN] Usually, megacities expand without proper planning in a context of demographic growth and are increasingly dependent on the natural resources related to the occupied area. This is a major challenge for the sustainable management of these territories, justifying the need for a better knowledge of land use/land cover (LULC) distribution and characteristics to observe spatial anthropogenic dynamics. In this study, the Bogota river basin and the Bogota megacity were analyzed as a case study. The main objective of this work was to analyze the historical LULC dynamics from 1985 to 2014. Reliable forecasting scenarios were developed using the Land Change Modeler to support sustainable management and planning. Results show an expansion of the Bogota megacity toward the Northeast and an increase of urban areas within the basin. These changes implied a loss of 58% of forest surface, a strategic ecosystem, from 1985 to 2014. This dynamic is expected to continue, with a 50% increase of urban areas between 2012 to 2050, thus the megacity and neighbor cities potentially become an "urban continuum". A replacement of crop and pasture lands near the city is expected, even though Bogota lands are among the best agricultural lands in the Andean region of Colombia.This research was funded by the SANTO TOMAS UNIVERSITY (Colombia) and the Ministry of Science and Innovation of Spain through the research projects TETISMED (CGL2014-58127-C3-3-R) and TETISCHANGE (ref RTI2018-093717-B-I00).Romero, CP.; García-Arias, A.; Dondeynaz, C.; Francés, F. (2020). Assessing Anthropogenic Dynamics in Megacities from the Characterization of Land Use/Land Cover Changes: The Bogotá Study Case. Sustainability. 12(9):1-21. https://doi.org/10.3390/su12093884121129Aguilar, A. G., Ward, P. M., & Smith Sr, C. . (2003). Globalization, regional development, and mega-city expansion in Latin America: Analyzing Mexico City’s peri-urban hinterland. Cities, 20(1), 3-21. doi:10.1016/s0264-2751(02)00092-6Kourtit, K., Nijkamp, P., & Reid, N. (2014). The new urban world: Challenges and policy. Applied Geography, 49, 1-3. doi:10.1016/j.apgeog.2014.01.007Lin, Y.-P., Chu, H.-J., Wu, C.-F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 25(1), 65-87. doi:10.1080/13658811003752332Rothwell, A., Ridoutt, B., Page, G., & Bellotti, W. (2015). Feeding and housing the urban population: Environmental impacts at the peri-urban interface under different land-use scenarios. Land Use Policy, 48, 377-388. doi:10.1016/j.landusepol.2015.06.017Haas, J., & Ban, Y. (2014). Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. International Journal of Applied Earth Observation and Geoinformation, 30, 42-55. doi:10.1016/j.jag.2013.12.012Tian, L., Li, Y., Yan, Y., & Wang, B. (2017). Measuring urban sprawl and exploring the role planning plays: A shanghai case study. Land Use Policy, 67, 426-435. doi:10.1016/j.landusepol.2017.06.002Veldkamp, A., & Fresco, L. O. (1996). CLUE: a conceptual model to study the Conversion of Land Use and its Effects. Ecological Modelling, 85(2-3), 253-270. doi:10.1016/0304-3800(94)00151-0Kok, K. (2004). The role of population in understanding Honduran land use patterns. Journal of Environmental Management, 72(1-2), 73-89. doi:10.1016/j.jenvman.2004.03.013Brown, L. A. (2014). The city in 2050: A kaleidoscopic perspective. Applied Geography, 49, 4-11. doi:10.1016/j.apgeog.2013.09.003Islam, M. S., & Ahmed, R. (1970). Land Use Change Prediction In Dhaka City Using Gis Aided Markov Chain Modeling. Journal of Life and Earth Science, 6, 81-89. doi:10.3329/jles.v6i0.9726Sangermano, F., Toledano, J., & Eastman, J. R. (2012). Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology, 27(4), 571-584. doi:10.1007/s10980-012-9710-yHe, Y., Ai, B., Yao, Y., & Zhong, F. (2015). Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 38, 164-174. doi:10.1016/j.jag.2014.12.014Vásquez, D. L. A., Balslev, H., & Sklenář, P. (2015). Human impact on tropical-alpine plant diversity in the northern Andes. Biodiversity and Conservation, 24(11), 2673-2683. doi:10.1007/s10531-015-0954-0Alonso, D. L., Pérez, R., Okio, C. K. Y. A., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. Journal of Environmental Management, 264, 110478. doi:10.1016/j.jenvman.2020.110478Hofstede, R. G. M. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian p�ramo grasslands. Plant and Soil, 173(1), 111-132. doi:10.1007/bf00155524Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1-2), 53-72. doi:10.1016/j.earscirev.2006.06.002Bocarejo, J. P., Portilla, I., & Pérez, M. A. (2013). Impact of Transmilenio on density, land use, and land value in Bogotá. Research in Transportation Economics, 40(1), 78-86. doi:10.1016/j.retrec.2012.06.030Mas, J.-F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111. doi:10.1016/j.envsoft.2013.09.010Pontius, R. (2018). Criteria to Confirm Models that Simulate Deforestation and Carbon Disturbance. Land, 7(3), 105. doi:10.3390/land7030105Jat, M. K., Choudhary, M., & Saxena, A. (2017). Application of geo-spatial techniques and cellular automata for modelling urban growth of a heterogeneous urban fringe. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 223-241. doi:10.1016/j.ejrs.2017.02.002Stellian, R., & Danna-Buitrago, J. P. (2017). Competitividad de los productos agropecuarios colombianos en el marco del tratado de libre comercio con los Estados Unidos: análisis de las ventajas comparativas. Revista de la CEPAL, 2017(122), 139-163. doi:10.18356/7fc7c097-esSAUNDERS, D. A., HOBBS, R. J., & MARGULES, C. R. (1991). Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 5(1), 18-32. doi:10.1111/j.1523-1739.1991.tb00384.xFischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16(3), 265-280. doi:10.1111/j.1466-8238.2007.00287.xROJAS, I., BECERRA, P., GÁLVEZ, N., LAKER, J., BONACIC, C., & HESTER, A. (2011). Relationship between fragmentation, degradation and native and exotic species richness in an Andean temperate forest of Chile. Gayana. Botánica, 68(2), 163-175. doi:10.4067/s0717-66432011000200006Mendoza S., J. E., & Etter R., A. (2002). Multitemporal analysis (1940–1996) of land cover changes in the southwestern Bogotá highplain (Colombia). Landscape and Urban Planning, 59(3), 147-158. doi:10.1016/s0169-2046(02)00012-9Oviedo Hernandez, D., & Dávila, J. D. (2016). Transport, urban development and the peripheral poor in Colombia — Placing splintering urbanism in the context of transport networks. Journal of Transport Geography, 51, 180-192. doi:10.1016/j.jtrangeo.2016.01.00

    Análisis integral del impacto del Cambio Climático enlos regímenes de agua, crecidas y sedimentos de una rambla mediterránea

    Get PDF
    El Cambio Climático y sus efectos en el Ciclo Hidrológico es un tema muy importante para todo el planeta, en la medida que estimar sus efectos tiene un papel preventivo. Esto además es especialmente crítico en las cuencas del arco mediterráneo español, dado que actualmente ya presentan un alto estrés hídrico y fuertes alteraciones antrópicas de su régimen. El caso de estudio es el de la Rambla de la Viuda. Dentro de la misma se encuentran los embalses de Mª. Cristina y Alcora, el primero de ellos con problemas de aterramiento y probable infra-dimensionamiento de su aliviadero, por lo que es prioritario el conocimiento de lo que pueda ocurrir con este embalse en el futuro. Los posibles efectos del Cambio Climático en la cuenca de la Rambla de la Viuda se han estimado utilizando el modelo hidrológico distribuido TETIS y su sub-modelo de sedimentos activado. La información meteorológica empleada proviene de escenarios climáticos regionalizados acordes con el quinto informe AR5 del IPCC, información que tuvo que ser corregida debido a errores relacionados con su resolución y/o hipótesis de regionalización. Los resultados de la modelización indican que en lo que respecta al clima, no hay una señal clara de cambios en la precipitación, tanto en cantidad como en torrencialidad, aunque si es evidente el futuro aumento de temperaturas que se traducirá en un incremento de la evapotranspiración de referencia. Tras la modelización, dicho incremento da lugar a una reducción de los recursos disponibles, tanto superficiales como subterráneos, pero al mismo tiempo a una disminución en los cuantiles de crecida, por lo que consecuentemente cabe esperar también en el futuro una disminución de los aportes de sedimentos al embalse de Mª Cristina
    corecore