106 research outputs found

    RV Knorr Cruise KN200-4, 13 Apr-03 May 2011. RAPID Mooring Cruise

    Get PDF
    This report describes the mooring operations conducted during RV Knorr cruise KN200-4 between 13 April and 3 May 2011. These mooring operations were completed as part of the United Kingdom Natural Environment Research Council (NERC) funded RAPID-WATCH Programme to monitor the Atlantic Meridional Overturning Circulation (MOC) at 26.5°N. The primary purpose on this cruise for the UK team was to service the RAPID Western Boundary moorings while the US teams worked on the Western Boundary Time Series project and the RAPID-MOCHA Western Boundary moorings. Cruise KN200-4 was from Port Everglades, Florida to Port Everglades, Florida and covered the Western Boundary moorings deployed on RB0901 and OC459. This cruise was the ninth annual refurbishment of the Western Boundary section of an array of moorings deployed across the Atlantic in order to continuously observe the MOC. This array will be further refined and refurbished during subsequent years. The instruments deployed on the array consist of a variety of current meters, bottom pressure recorders, and CTD loggers, which, combined with time series measurements of the Florida Straits Current and wind stress estimates, will be used to determine the strength and structure of the MOC at 26.5°N. (http://www.noc.soton.ac.uk/rapid

    RV Walton Smith Cruise WS16336, 01 - 07 Dec 2016, Miami to Miami, USA. MerMEED microstructure cruise report

    Get PDF
    The MerMEED (Mechanisms responsible for Mesoscale Eddy Energy Dissipation) project is a NERC funded project (NE/N001745/1, 2015-2018) to investigate the levels of dissipation associated with eddies at a western boundary, in order to identify the mechanisms responsible. Mesoscale eddies are ubiquitous in the worlds oceans, and can be found in the subtropical Atlantic travelling slowly westward (at 4-5 cm/s), with a radius of about 100 km. These eddies are formed through baroclinic instability or wind forcing across the Atlantic, but when they reach the western boundary (east coast of the USA), they disappear from the satellite altimetry record. This disappearance of eddies occurs throughout the worldsĂ­ oceans at western boundaries, but from altimetry alone, it is not known whether they disappear because energy is transferred to other wave modes or the mean flow, or whether it is locally dissipated through eddy-topography interactions. The purpose of this cruise was to make microstructure temperature and shear measurements in order to measure dissipation at the intersection of an anticyclonic eddy and the steep topography to the east of Abaco, Bahamas. During the 7 day cruise, 70 profiles of microstructure data were collected using a tethered microstructure profiler, and a shipboard 75 kHz ADCP collected concurrent measurements of ocean currents. This cruise is the first of several planned cruises for the MerMEED project, and the data collected are intended to complement additional field operations, including moored instruments added to the RAPID array (thermistors and ADCPs on the WB1 mooring) and glider deployments planned for the 2017/18 year

    Generation of Internal Waves by Eddies Impinging on the Western Boundary of the North Atlantic

    Get PDF
    This is the final version. Available from the American Meteorological Society via the DOI in this recordDespite the major role played by mesoscale eddies in redistributing the energy of the large-scale circulation, our understanding of their dissipation is still incomplete. This study investigates the generation of internal waves by decaying eddies in the North Atlantic western boundary. The eddy presence and decay are measured from the altimetric surface relative vorticity associated with an array of full-depth current meters extending ~100 km offshore at 26.5°N. In addition, internal waves are analyzed over a topographic rise from 2-yr high-frequency measurements of an acoustic Doppler current profiler (ADCP), which is located 13 km offshore in 600-m deep water. Despite an apparent polarity independence of the eddy decay observed from altimetric data, the flow in the deepest 100 m is enhanced for anticyclones (25.2 cm s−1) compared with cyclones (−4.7 cm s−1). Accordingly, the internal wave field is sensitive to this polarity-dependent deep velocity. This is apparent from the eddy-modulated enhanced dissipation rate, which is obtained from a finescale parameterization and exceeds 10−9 W kg−1 for near-bottom flows greater than 8 cm s−1. The present study underlines the importance of oceanic western boundaries for removing the energy of low-mode westward-propagating eddies to higher-mode internal waves.The RAPID-WATCH MOC monitoring project is funded by the U.K. Natural Environment Research Council, the U.S. National Science Foundation, and the U.S. National Oceanic and Atmospheric Administration. L. ClĂ©ment was supported by NERC Grant NE/I528626/1. The participation of K. L. Sheen and J. A. Brearley in this study was supported by NERC Grants NE/E007058/1 and NE/E005667/1. A.C.N.G. acknowledges the support of a Philip Leverhulme Prize

    Generation of internal waves by eddies impinging on the western boundary of the North Atlantic

    Get PDF
    Despite the major role played by mesoscale eddies in redistributing the energy of the large-scale circulation, our understanding of their dissipation is still incomplete. This study investigates the generation of internal waves by decaying eddies in the North Atlantic western boundary. The eddy presence and decay are measured from the altimetric surface relative vorticity associated with an array of full-depth current meters extending ~100 km offshore at 26.5°N. In addition, internal waves are analysed over a topographic rise from 2-year high-frequency measurements of an Acoustic Doppler Current Profiler (ADCP), which is located 13 km offshore in 600 m deep water. Despite an apparent polarity independence of the eddy decay observed from altimetric data, the flow in the deepest 100 m is enhanced for anticyclones (25.2 cm s−1) compared with cyclones (-4.7 cm s−1). Accordingly, the internal wave field is sensitive to this polarity-dependent deep velocity. This is apparent from the eddy-modulated enhanced dissipation rate, which is obtained from a finescale parameterization and exceeds 10−9 W kg−1 for near-bottom flows greater than 8 cm s−1. The present study underlines the importance of oceanic western boundaries for removing the energy of low-mode westward-propagating eddies to higher-mode internal waves

    Estimating the Deep Overturning Transport Variability at 26°N Using Bottom Pressure Recorders

    Get PDF
    The RAPID mooring array at 26°N in the Atlantic has been observing the Atlantic meridional overturning circulation (AMOC) since 2004, with estimates of AMOC strength suggesting that it has declined over the 2004–2016 period. When AMOC transport is estimated, an external transport is added to the observed Ekman, Florida Straits, and baroclinic geostrophic transports to ensure zero net mass transport across the section. This approach was validated using the first year of RAPID data by estimating the external component directly from in situ bottom pressure data. Since bottom pressure recorders commonly show low‐frequency instrument drift, bottom pressure data had to be dedrifted prior to calculating the external component. Here we calculate the external component from 10 years of in situ bottom pressure data and evaluate two choices for dedrifting the records: traditional and adjusted using a Gravity Recovery and Climate Experiment (GRACE) bottom pressure solution. We show that external transport estimated from GRACE‐adjusted, in situ bottom pressure data correlates better with the RAPID compensation transport (r=0.65,p<0.05) than using individually dedrifted bottom pressure recorders, particularly at low frequencies on timescales shorter than 10 years, demonstrating that the low‐frequency variability added from GRACE is consistent with the transport variability at RAPID. We further use the bottom pressure‐derived external transport to evaluate the zonal distribution of the barotropic transport variability and find that the transport variability is concentrated west of the Mid‐Atlantic Ridge rather than uniformly distributed across the basin, as assumed in the RAPID calculation

    Coherent Circulation Changes in the Deep North Atlantic From 16°N and 26°N Transport Arrays

    Get PDF
    The meridional overturning circulation (MOC) has been measured by boundary arrays in the Atlantic since 2000. Over the past decade of measurements, however, the reported tendencies in overturning circulation strength have differed between 16°N and 26°N. Here we investigate these differences by diagnosing their origin in the observed hydrography, finding that both arrays show deep waters (below 1,100 dbar) at the western boundary becoming fresher and less dense. The associated change in geopotential thickness is about 0.15 m2 s−2 between 2004–2009 and 2010–2014, with the shift occurring between 2009 and 2010 and earlier at 26°N than 16°N. In the absence of a similar density change on the east of the Atlantic, this middepth reduction in water density at the west would drive an increase in the shear between the upper and lower layers of North Atlantic Deep Water of about 2.6 Sv at 26°N and 3.9 Sv at 16°N. These transport anomalies result in an intensifying tendency in the MOC estimate at 16°N, but at 26°N, the method of correcting the geostrophic reference level results in an opposing (reducing) tendency of the MOC. The results indicate that both arrays are observing coherent, low‐frequency changes, but that there remain discrepancies in the methods of addressing the geostrophic reference level for boundary arrays measuring ocean circulation

    Eddy Impacts on the Florida Current

    No full text
    The Gulf Stream in the Atlantic carries warm water northwards and forms both the return closure of the subtropical gyre as well as the upper limb of the meridional overturning circulation. Recent time series recorded east of the Bahamas at 26°N indicate that from May 2009 to April 2011, in contrast with past observations, the northward flowing Antilles Current covaried with the Gulf Stream in the Florida Straits—the Florida Current—even though the Florida and Antilles Currents are separated by banks and islands spanning 150?km. The peak-to-trough amplitude of transport variations during this period was 15?×?106?m3?s?1 for the Florida Current and 12?×?106?m3?s?1 for the Antilles Current, at time scales of 50?days to a year. From satellite observations, we show that the fluctuations in both the Florida and Antilles Currents between May 2009 and April 2011 are driven by eddy activity east of the Bahamas. Since the Florida Current time series is a critical time series for the state of the oceans, and often compared to climate models, this newly identified source of variability needs careful consideration when attributing the variability of the Florida Current to changes in the larger-scale circulations (e.g., gyre and overturning) or wind forcing.<br/

    Cessation of Labrador Sea Convection triggered by distinct fresh and warm (Sub)mesoscale Flows

    Get PDF
    By ventilating the deep ocean, deep convection in the Labrador Sea plays a crucial role in the climate system. Unfortunately, the mechanisms leading to the cessation of convection and, hence, the mechanisms by which a changing climate might affect deep convection remain unclear. In winter 2020, three autonomous underwater gliders sampled the convective region and both its spatial and temporal boundaries. Both boundaries are characterised by higher sub-daily mixed-layer depth variability sampled by the gliders than the convective region. At the convection boundaries, buoyant intrusions–including eddies and filaments–instead of atmospheric warming primarily trigger restratification by bringing buoyancy with a comparable contribution from either fresh or warm intrusions. At the edges of these intrusions, submesoscale instabilities, such as symmetric instabilities and mixed-layer baroclinic instabilities, seem to contribute to the decay of the intrusions. In winter, enhanced lateral buoyancy gradients are correlated with strong destabilising surface heat fluxes and along-front winds. Consequently, winter atmospheric conditions and buoyant intrusions participate in halting convection by triggering restratification while surface fluxes are still destratifying. This study reveals freshwater anomalies in a narrow area offshore of the Labrador Current and near the convective region; this area has received less attention than the more eddy-rich West Greenland Current, but is a potential source of freshwater in closer proximity to the region of deep convection. Freshwater fluxes from the Arctic and Greenland are expected to increase under a changing climate, and our findings suggest that they may play an active role in the restratification of deep convection

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Compensation between meridional flow components of the Atlantic MOC at 26°N

    Get PDF
    From ten years of observations of the Atlantic meridional overturning circulation (MOC) at 26° N (2004–2014), we revisit the question of flow compensation between components of the circulation. Contrasting with early results from the observations, transport variations of the Florida Current (FC) and upper mid-ocean (UMO) transports (top 1000 m east of the Bahamas) are now found to compensate on sub-annual timescales. The observed compensation between the FC and UMO transports is associated with horizontal circulation and means that this part of the correlated variability does not project onto the MOC. A deep baroclinic response to wind-forcing (Ekman transport) is also found in the lower North Atlantic Deep Water (LNADW; 3000–5000 m) transport. In contrast, co-variability between Ekman and the LNADW transports does contribute to overturning. On longer timescales, the southward UMO transport has continued to strengthen, resulting in a continued decline of the MOC. Most of this interannual variability of the MOC can be traced to changes in isopycnal displacements on the western boundary, within the top 1000 m and below 2000 m. Substantial trends are observed in isopycnal displacements in the deep ocean, underscoring the importance of deep boundary measurements to capture the variability of the Atlantic MOC
    • 

    corecore