185 research outputs found

    A six-parameter space to describe galaxy diversification

    Full text link
    Galaxy diversification proceeds by transforming events like accretion, interaction or mergers. These explain the formation and evolution of galaxies that can now be described with many observables. Multivariate analyses are the obvious tools to tackle the datasets and understand the differences between different kinds of objects. However, depending on the method used, redundancies, incompatibilities or subjective choices of the parameters can void the usefulness of such analyses. The behaviour of the available parameters should be analysed before an objective reduction of dimensionality and subsequent clustering analyses can be undertaken, especially in an evolutionary context. We study a sample of 424 early-type galaxies described by 25 parameters, ten of which are Lick indices, to identify the most structuring parameters and determine an evolutionary classification of these objects. Four independent statistical methods are used to investigate the discriminant properties of the observables and the partitioning of the 424 galaxies: Principal Component Analysis, K-means cluster analysis, Minimum Contradiction Analysis and Cladistics. (abridged)Comment: Accepted for publicationin A\&

    Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease

    Get PDF
    Background: Although the short-term benefits of bilateral stimulation of the subthalamic nucleus in patients with advanced Parkinson's disease have been well documented, the long-term outcomes of the procedure are unknown. Methods: We conducted a five-year prospective study of the first 49 consecutive patients whom we treated with bilateral stimulation of the subthalamic nucleus. Patients were assessed at one, three, and five years with levodopa (on medication) and without levodopa (off medication), with use of the Unified Parkinson's Disease Rating Scale. Seven patients did not complete the study: three died, and four were lost to follow-up. Results: As compared with base line, the patients' scores at five years for motor function while off medication improved by 54 percent (P<0.001) and those for activities of daily living improved by 49 percent (P<0.001). Speech was the only motor function for which off-medication scores did not improve. The scores for motor function on medication did not improve one year after surgery, except for the dyskinesia scores. On-medication akinesia, speech, postural stability, and freezing of gait worsened between year 1 and year 5 (P<0.001 for all comparisons). At five years, the dose of dopaminergic treatment and the duration and severity of levodopa-induced dyskinesia were reduced, as compared with base line (P<0.001 for each comparison). The average scores for cognitive performance remained unchanged, but dementia developed in three patients after three years. Mean depression scores remained unchanged. Severe adverse events included a large intracerebral hemorrhage in one patient. One patient committed suicide. Conclusions: Patients with advanced Parkinson's disease who were treated with bilateral stimulation of the subthalamic nucleus had marked improvements over five years in motor function while off medication and in dyskinesia while on medication. There was no control group, but worsening of akinesia, speech, postural stability, freezing of gait, and cognitive function between the first and the fifth year is consistent with the natural history of Parkinson's disease

    Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution

    Full text link
    We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry observations of the M87 jet taken during 1994-1995. Many knot regions are very highly polarized (∌40−50\sim 40-50%, approaching the theoretical maximum for optically thin synchrotron radiation), suggesting highly ordered magnetic fields. High degrees of polarization are also observed in interknot regions. While the optical and radio polarization maps share many similarities, we observe significant differences between the radio and optical polarized structures, particularly for bright knots in the inner jet, giving us important insight into the jet's radial structure. Unlike in the radio, the optical magnetic field position angle becomes perpendicular to the jet at the upstream ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases markedly at the position of the flux maxima in these knots. In contrast, the magnetic field position angle observed in the radio remains parallel to the jet in most of these regions, and the decreases in radio polarization are smaller. More minor differences are seen in other jet regions. Many of the differences between optical and radio polarimetry results can be explained in terms of a model whereby shocks occur in the jet interior, where higher-energy electrons are concentrated and dominate both polarized and unpolarized emissions in the optical, while the radio maps show strong contributions from lower-energy electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999

    Discovery of an Optical Jet in the BL Lac Object 3C 371

    Full text link
    We have detected an optical jet in the BL Lac object 3C 371 that coincides with the radio jet in this object in the central few kpc. The most notable feature is a bright optical knot 3 arcsec (4 kpc) from the nucleus that occurs at the location where the jet apparently changes its direction by ~30 degrees. The radio, near-infrared and optical observations of this knot are consistent with a single power-law spectrum with a radio-optical spectral index alpha = -0.81. One possible scenario for the observed turn is that the jet is interacting with the material in the bridge connecting 3C 371 to nearby galaxies and the pressure gradient is deflecting the jet significantly.Comment: 11 pages, LaTeX, 4 figures (1 eps, 3 gifs), accepted for publication in ApJ Letter

    &#8220;Three-bullets&#8221; loaded mesoporous silica nanoparticles for combined photo/chemotherapy

    Get PDF
    This contribution reports the design, preparation, photophysical and photochemical characterization, as well as a preliminary biological evaluation of mesoporous silica nanoparticles (MSNs) covalently integrating a nitric oxide (NO) photodonor (NOPD) and a singlet oxygen (1O2) photosensitizer (PS) and encapsulating the anticancer doxorubicin (DOX) in a noncovalent fashion. These MSNs bind the NOPD mainly in their inner part and the PS in their outer part in order to judiciously exploit the different diffusion radius of the cytotoxic NO and 1O2. Furthermore this silica nanoconstruct has been devised in such a way to permit the selective excitation of the NOPD and the PS with light sources of different energy in the visible window. We demonstrate that the individual photochemical performances of the photoactive components of the MSNs are not mutually affected, and remain unaltered even in the presence of DOX. As a result, the complete nanoconstruct is able to deliver NO and 1O2 under blue and green light, respectively, and to release DOX under physiological conditions. Preliminary biological results performed using A375 cancer cells show a good tolerability of the functionalized MSNs in the dark and a potentiated activity of DOX upon irradiation, due to the effect of the NO photoreleased

    Galaxies and Cladistics

    Full text link
    The Hubble tuning fork diagram, based on morphology and established in the 1930s, has always been the preferred scheme for classification of galaxies. However, the current large amount of multiwavelength data, most often spectra, for objects up to very high distances, asks for more sophisticated statistical approaches. Interpreting formation and evolution of galaxies as a ?transmission with modification' process, we have shown that the concepts and tools of phylogenetic systematics can be heuristically transposed to the case of galaxies. This approach, which we call ?astrocladistics', has successfully been applied on several samples. Many difficulties still remain, some of them being specific to the nature of both galaxies and their diversification processes, some others being classical in cladistics, like the pertinence of the descriptors in conveying any useful evolutionary information.Comment: Talk given at the "12th Evolutionary Biology Meeting" held in Marseille, France, Sept. 24-26, 200

    Molecular interactions, characterization and photoactivity of Chlorophyll a/chitosan/2-HP-ÎČ-cyclodextrin composite films as functional and active surfaces for ROS production

    Get PDF
    Novel photosensitizing film based on the natural hybrid polymer Chitosan/2-hydroxy-propyl-ÎČ-Cyclodextrin (CH/CD) is synthesized introducing Chlorophyll a (CH/CD/Chla) as a photoactive agent for possible application in antimicrobial photodynamic therapy (PDT). The polymer absorbs visible light, in turn able to generate reactive oxygen species (ROS) and, therefore it can be used as environmental friendly and biodegradable polymeric photosensitizer (PS). The modified film is characterized by means of different spectroscopic, calorimetric, diffraction techniques and microscopic imaging methods including time-resolved absorption spectroscopy. UV–Vis, FTIR-ATR and X-ray Photoelectron Spectroscopy (XPS) analyses suggest that Chla shows a strong affinity toward Chitosan introducing interactions with amino groups present on the polymer chains. Nanosecond laser flash photolysis technique provides evidence for the population of the excited triplet state of Chla. Photogeneration of singlet oxygen is demonstrated by both direct detection by using infrared luminescence spectroscopy and chemical methods based on the use of suitable traps. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Differential Scanning Calorimetry (DSC) analyses confirm also the occurrence of structural changes both on the film surface and within the film layer induced by the insertion of the pigment. Moreover, X-ray Diffraction data (XRD) shows the existence of an amorphous phase for the chitosan films in all the compared conditions

    Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(&#949;-caprolactone) diblock copolymers: beyond a paradigm

    Get PDF
    Polymeric nanoparticles (NPs) of poly(\u3b5-caprolactone) (PCL) covered with a hydrophilic poly(ethylene glycol) (PEG) shell are usually prepared from diblock PEG-PCL copolymers through different techniques. Furthermore PEG, NPs can be decorated with targeting ligands to accumulate in specific cell lines. However, the density and conformation of PEG on the surface and its impact on the exposition of small targeting ligands has been poorly considered so far although this has a huge impact on biological behaviour. Here, we focus on PEG-PCL NPs and their folate-targeted version to encourage accumulation in cancer cells overexpressing folate receptor \u3b1. NPs were prepared with mixtures of PEG-PCL with different PEG length (short 1.0kDa, long 2.0kDa,) and a folate-functionalized PEG-PCL (PEG 1.5kDa) by the widely employed solvent displacement method. In depth characterization of NPs surface by 1H NMR, fluorescence and photon correlation spectroscopy evidenced a PEGylation extent below 7% with PEG in a mushroom conformation and the presence of folate more exposed to water pool in the case of copolymer with short PEG. NPs with short PEG adsorbed HSA forming a soft corona without aggregating. Although limited, PEGylation overall reduced NPs uptake in human macrophages. Uptake of NPs exposing folate prepared with short PEG was higher in KB cells (FR+) than in A549 (FR-), occurred via FR-receptor and involved lipid rafts-dependent endocytosis. In conclusion, the present results demonstrate that PEG length critically affects protein interaction and folate exposition with a logical impact on receptor-mediated cell uptake. Our study highlights that the too simplistic view suggesting that PEG-PCL gives PEG-coated NPs needs to be re-examined in the light of actual surface properties, which should always be considered case-by-case

    A generator of peroxynitrite activatable with red light

    Get PDF
    The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO(−)) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an N-nitroso appendage through a flexible spacer. Single photon red light excitation of this molecular construct triggers the release of nitric oxide (˙NO) and simultaneously produces superoxide anions (O(2)˙(−)). The diffusion-controlled reaction between these two radical species generates ONOO(−), as confirmed by the use of fluorescein-boronate as a highly selective chemical probe. Besides, the red fluorescence of the hybrid allows its tracking in different types of cancer cells where it is well-tolerated in the dark but induces remarkable cell mortality under irradiation with red light in a very low concentration range, with very low light doses (ca. 1 J cm(−2)). This ONOO(−) generator activatable by highly biocompatible and tissue penetrating single photon red light can open up intriguing prospects in biomedical research, where precise and spatiotemporally controlled concentrations of ONOO(−) are required
    • 

    corecore