200 research outputs found

    On visual distances for spectrum-type functional data

    Full text link
    A functional distance (H), based on the Hausdorff metric between the function hypographs, is proposed for the space Ɛ of non-negative real upper semicontinuous functions on a compact interval. The main goal of the paper is to show that the space (Ɛ,H) is particularly suitable in some statistical problems with functional data which involve functions with very wiggly graphs and narrow, sharp peaks. A typical example is given by spectrograms, either obtained by magnetic resonance or by mass spectrometry. On the theoretical side, we show that (Ɛ,H) is a complete, separable locally compact space and that the H-convergence of a sequence of functions implies the convergence of the respective maximum values of these functions. The probabilistic and statistical implications of these results are discussed, in particular regarding the consistency of k-NN classifiers for supervised classification problems with functional data in H. On the practical side, we provide the results of a small simulation study and check also the performance of our method in two real data problems of supervised classification involving mass spectraA. Cuevas and R. Fraiman have been partially supported by Spanish Grant MTM2013-44045-

    Testing statistical hypothesis on random trees and applications to the protein classification problem

    Full text link
    Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov--Smirnov-type goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford--Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton--Watson related processes.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS218 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Replacement decisions with maintenance under uncertainty: An imbedded optimal control model

    Get PDF
    How should a manager make replacement decisions for a chain of machines over time if each is maintained by an optimal control model addressing uncertainty of machine breakdowns? A network representation of the problem involves arcs with interdependent costs. A solution algorithm is presented and replacement considerations under technological change are incorporated into a well-known optimal control model for maintenance under uncertainty (that of Kamien and Schwartz 1971). The method is illustrated by an example

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Noise suppression and enhanced focusability in plasma Raman amplifier with multi-frequency pump

    Get PDF
    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure

    Collapse in the nonlocal nonlinear Schr\"odinger equation

    Full text link
    We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr\"{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoff's method and virial identities. We find that for for a one-dimensional case, i.e. for n=1n=1, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension n2n\geq2 and singular kernel 1/rα\sim 1/r^\alpha, no collapse takes place if α<2\alpha<2, whereas collapse is possible if α2\alpha\ge2. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of 1/r2\sim 1/r^2 kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases
    corecore