37 research outputs found

    Phytoplankton community succession and dynamics using optical approaches

    Get PDF
    The phytoplankton in coastal regions are responding to constant environmental changes, thus the use of proxies derived from in situ frequent time-series observations and validated from traditional microscopic or pigment methods can be a solution for detecting rapid responses of community dynamics and succession. In this study, we combined in situ high-frequency (every 30 min from May to September 2017) optical and hydrographic data from a moored buoy and weekly discrete samplings to track phytoplankton community dynamics and succession in Mausund Bank, a highly productive region of the coast of Norway. Three hydrographic regimes were observed: mixing period (MP) in spring, onset of stratification (transient period, TP) in summer and a stratified period (SP) in fall, with occasional strong winds that disrupted the surface stratification in the beginning of September. A bloom dominated by the diatom Skeletonema costatum was observed in the MP due to intense mixing and nutrient availability, while flagellates prevailed in nutrient-poor waters during the TP, followed by a bloom dominated by rhizosolenid diatoms (Proboscia alata and Guinardia delicatula), when stratification peaked. A mixed assemblage of diatoms (e.g. Pseudo-nitzschia), coccolithophores and dinoflagellates occurred during the SP, as strong winds reintroduced nutrients to surface waters. Through pigment (chemotaxonomy) and microscopic observations, we tested, for the first time in a coastal region, whether an ‘optical community index’ derived from in situ measurements of chlorophyll a fluorescence (Fchla) and optical particulate backscattering (bbp) is suitable to differentiate between diatom versus flagellate dominance. We found a negative relationship between Fchla:bbp and diatom:flagellate, contrary to previous observations, possibly because of the influence of non-algal contribution (e.g. zooplankton, fecal pellets and detritus) to the bbp pool in highly productive systems. This finding suggests that such relationship is not universal and that other parameters are needed to refine the optical community index in coastal regions

    Spring phytoplankton communities of the Labrador Sea (2005–2014): pigment signatures, photophysiology and elemental ratios

    Get PDF
    The Labrador Sea is an ideal region to study the biogeographical, physiological, and biogeochemical implications of phytoplankton community composition due to sharp transitions between distinct water masses across its shelves and central basin. We have investigated the multi-year (2005–2014) distributions of late spring and early summer (May to June) phytoplankton communities in the various hydrographic settings of the Labrador Sea. Our analysis is based on pigment markers (using CHEMTAX analysis), and photophysiological and biogeochemical characteristics associated with each phytoplankton community. Diatoms were the most abundant group, blooming first in shallow mixed layers of haline-stratified Arctic shelf waters. Along with diatoms, chlorophytes co-dominated at the western end of the section (particularly in the polar waters of the Labrador Current (LC)), whilst Phaeocystis co-dominated in the east (modified polar waters of the West Greenland Current (WGC)). Pre-bloom conditions occurred in deeper mixed layers of the central Labrador Sea in May, where a mixed assemblage of flagellates (dinoflagellates, prasinophytes, prymnesiophytes, particularly coccolithophores, and chrysophytes/pelagophytes) occurred in low-chlorophyll areas, succeeding to blooms of diatoms and dinoflagellates in thermally stratified Atlantic waters in June. Light-saturated photosynthetic rates and saturation irradiance levels were highest at stations where diatoms were the dominant phytoplankton group ( >  70 % of total chlorophyll a), as opposed to stations where flagellates were more abundant (from 40 up to 70 % of total chlorophyll a). Phytoplankton communities from the WGC (Phaeocystis and diatoms) had lower light-limited photosynthetic rates, with little evidence of photoinhibition, indicating greater tolerance to a high light environment. By contrast, communities from the central Labrador Sea (dinoflagellates and diatoms), which bloomed later in the season (June), appeared to be more sensitive to high light levels. Ratios of accessory pigments (AP) to total chlorophyll a (TChl a) varied according to phytoplankton community composition, with polar phytoplankton (cold-water related) having lower AP  :  TChl a. Polar waters (LC and WGC) also had higher and more variable particulate organic carbon (POC) to particulate organic nitrogen (PON) ratios, suggesting the influence of detritus from freshwater input, derived from riverine, glacial, and/or sea ice meltwater. Long-term observational shifts in phytoplankton communities were not assessed in this study due to the short temporal frame (May to June) of the data. Nevertheless, these results add to our current understanding of phytoplankton group distribution, as well as an evaluation of the biogeochemical role (in terms of C  :  N ratios) of spring phytoplankton communities in the Labrador Sea, which will assist our understanding of potential long-term responses of phytoplankton communities in high-latitude oceans to a changing climate

    Biogeographical patterns and environmental controls of phytoplankton communities from contrasting hydrographical zones of the Labrador Sea

    Get PDF
    The Labrador Sea is an important oceanic sink for atmospheric CO2 because of intensive convective mixing during winter and extensive phytoplankton blooms that occur during spring and summer. Therefore, a broad-scale investigation of the responses of phytoplankton community composition to environmental forcing is essential for understanding planktonic food-web organisation and biogeochemical functioning in the Labrador Sea. Here, we investigated the phytoplankton community structure (>4 μm) from near surface blooms (1.2 mg chla m−3) occurred on and near the shelves in May and in offshore waters of the central Labrador Sea in June due to haline- and thermal-stratification, respectively. Sea ice-related (Fragilariopsis cylindrus and F. oceanica) and Arctic diatoms (Fossula arctica, Bacterosira bathyomphala and Thalassiosira hyalina) dominated the relatively cold (<0 °C) and fresh (salinity < 33) waters over the Labrador shelf (e.g., on the southwestern side of the Labrador Sea), where sea-ice melt and Arctic outflow predominates. On the northeastern side of the Labrador Sea, intense blooms of the colonial prymnesiophyte Phaeocystis pouchetii and diatoms, such as Thalassiosira nordenskioeldii, Pseudo-nitzschia granii and Chaetoceros socialis, occurred in the lower nutrient waters (nitrate < 3.6 μM) of the West Greenland Current. The central Labrador Sea bloom occurred later in the season (June) and was dominated by Atlantic diatoms, such as Ephemera planamembranacea and Fragilariopsis atlantica. The data presented here demonstrate that the Labrador Sea spring and early summer blooms are composed of contrasting phytoplankton communities, for which taxonomic segregation appears to be controlled by the physical and biogeochemical characteristics of the dominant water masses

    Human papillomavirus knowledge, beliefs, and behaviors : a questionnaire adaptation

    Get PDF
    Objective: This study aims to adapt a questionnaire about the knowledge, beliefs and behaviors regarding HPV and related subjects into Brazilian Portuguese. Study Design: National Survey. Methods: The instrument was translated into Portuguese and retranslated into English separately. Experts assessed the validity of the content and cross-cultural adaptation of the instrument. The instrument was administered to 8580 male and female Brazilian adolescents and young adults (aged between 16 and 25 years) who participated in the National Survey of Human Papillomavirus Prevalence (POP-Brazil). This large-scale survey enrolled participants from 26 Brazilian capitals and the Federal District. Results: The full questionnaire is composed of 30 questions, with a good absolute agreement between its two halves (61.16 9.97). The preventive behavior section showed the lowest agreement. Men and women showed a difference concerning their knowledge about HPV (score for men 0.48 ( 8.93) vs. women 0.55 ( 4.51), p < 0.001). Conclusion: The proposed questionnaire is the first instrument able to describe the knowledge, beliefs and behaviors regarding HPV and related subjects in Brazilian women and men. This questionnaire appears to be adequate for use in future studies that may produce evidence and knowledge on these specific topics

    Contrasting phytoplankton-zooplankton distributions observed through autonomous platforms, in-situ optical sensors and discrete sampling

    Get PDF
    Plankton distributions are remarkably ‘patchy’ in the ocean. In this study, we investigated the contrasting phytoplankton-zooplankton distributions in relation to wind mixing events in waters around a biodiversity-rich island (Runde) located off the western coast of Norway. We used adaptive sampling from AUV and shipboard profiles of in-situ phytoplankton photo-physiology and particle identification (copepods, fecal pellets and the dinoflagellate Tripos spp.) and quantification using optical and imaging sensors. Additionally, traditional seawater and net sampling were collected for nutrient and in-vitro chlorophyll a concentrations and phytoplankton and meso-zooplankton abundances. Persistent strong wind conditions (~5 days) disrupted the stratification in offshore regions, while stratification and a subsurface chlorophyll maximum (SCM) were observed above the base of the mixed layer depth (MLD ~30 m) in inshore waters. Contrasting phytoplankton and zooplankton abundances were observed between inshore (with the presence of a SCM) and offshore waters (without the presence of a SCM). At the SCM, phytoplankton abundances (Tripos spp., the diatom Proboscia alata and other flagellates) were half (average of 200 cell L-1) of those observed offshore. On the contrary, meso-zooplankton counts were ~6× higher (732 ind m-3 for Calanus spp.) inshore (where a SCM was observed) compared to offshore areas. In parallel, fecal pellets and ammonium concentrations were high (>1000 ind m-3 for the upper 20 m) at the SCM, suggesting that the shallow mixed layer might have increased encounter rates and promoted strong grazing pressure. Low nutrient concentrations (< 1μM for nitrate) were found below the MLD (60 m) in offshore waters, suggesting that mixing and nutrient availability likely boosted phytoplankton abundances. The size of the absorption cross-section (σPII’) and yield of photosystem II photochemistry under ambient light (φPII’) changed according to depth, while the depth-related electron flow (JPII) was similar between regions, suggesting a high degree of community plasticity to changes in the light regime. Our results emphasize the importance of using multiple instrumentation, in addition to traditional seawater and net sampling for a holistic understanding of plankton distributions.publishedVersio

    Definição de parâmetros de dinâmica e qualidade da água para o gerenciamento em reservatório profundo de hidrelétrica subtropical tipo cânion

    Get PDF
    Spatial and temporal variability patterns of water quality were evaluated through monthly collection of water samples (surface, subsurface and bottom) from 2005 to 2012. Principal Component Analysis was used to define the relative importance of each variable and Anova (two way) to analyze the significance of differences in water quality in the longitudinal axis of the reservoir. The variables: turbidity, Secchi transparency, residence time and temperature have greater importance on water quality. It was observed spatial and temporal gradients, related to the circulation, sedimentation and resuspension processes, and the influence of low flow, high residence time and winter mixing of water column on the cycling of solids and nutrients may explain the variation in these processes. The use of multivariate statistical analysis methods provided important information to understand these processes, it helps the interpretation of complex data to improve monitoring, and use of information to decision makers.Os padrões de variabilidade espacial e temporal da qualidade da água foram avaliados através de coletas mensais de amostras de água (superfície, subsuperfície e fundo) de 2005 a 2012. A Análise de Componentes Principais foi utilizada para definir a importância relativa de cada variável e Anova (bidirecional) para analisar a significância das diferenças na qualidade da água no eixo longitudinal do reservatório. As variáveis: turbidez, transparência de Secchi, tempo de residência e temperatura têm maior importância na qualidade da água. Foram observados gradientes espaciais e temporais, relacionados aos processos de circulação, sedimentação e ressuspensão, e a influência da baixa vazão, alto tempo de residência e mistura invernal da coluna d’água na ciclagem de sólidos e nutrientes pode explicar a variação desses processos. A utilização de métodos de análise estatística multivariada forneceu informações importantes para a compreensão desses processos, auxilia na interpretação de dados complexos para melhorar o monitoramento e uso das informações para os tomadores de decisão

    Diatom Biogeography From the Labrador Sea Revealed Through a Trait-Based Approach

    Get PDF
    Diatoms are a keystone algal group, with diverse cell morphology and a global distribution. The biogeography of morphological, functional, and life-history traits of marine diatoms were investigated in Arctic and Atlantic waters of the Labrador Sea during the spring bloom (2013-2014). In this study, trait-based analysis using community-weighted means showed that low temperatures (< 0°C) in Arctic waters correlated positively with diatom species that have traits such as low temperature optimum growth and the ability to produced ice-binding proteins, highlighting their sea ice origin. High silicate concentrations in Arctic waters, as well as sea ice cover and shallow bathymetry, favoured diatom species that were heavily silicified, colonial and capable of producing resting spores, suggesting that these are important traits for this community. In Atlantic waters, diatom species with large surface area to volume ratios were dominant in deep mixed layers, whilst low silicate to nitrate ratios correlated positively with weakly silicified species. Sharp cell projections, such as processes or spines, were positively correlated with water-column stratification, indicating that these traits promote positive buoyancy for diatom cells. Our trait-based analysis directly links cell morphology and physiology with diatom species distribution, allowing new insights on how this method can potentially be applied to explain ecophysiology and shifting biogeographical distributions in a warming climate

    Monitoring Algal Blooms with Complementary Sensors on Multiple Spatial and Temporal Scales

    Get PDF
    Climate change, and other human-induced impacts, are severely increasing the intensity and occurrences of algal blooms in coastal regions (IPCC, 2022). Ocean warming, marine heatwaves, and eutrophication promote suitable conditions for rapid phytoplankton growth and biomass accumulation. An increase in such primary producers provides food for marine organisms, and phytoplankton play an important global role in fixing atmospheric carbon dioxide and producing much of the oxygen we breathe. But harmful algal blooms (HABs) can also form, and they may adversely affect the ecosystem by reducing oxygen availability in the water, releasing toxic substances, clogging fish gills, and diminishing biodiversity. Understanding, forecasting, and ultimately mitigating HAB events could reduce their impact on wild fish populations, help aquaculture producers avoid losses, and facilitate a healthy ocean. Phytoplankton respond rapidly to changes in the environment, and measuring the distribution of a bloom and its species composition and abundance is essential for determining its ecological impact and potential for harm. Satellite remote sensing of chlorophyll concentration has been used extensively to observe the development of algal blooms. Although this tool has wide spatial and temporal (nearly daily) coverage, it is limited to surface ocean waters and cloud-free days. Microscopic analyses of water and net samples allow much closer examination of the species present in a bloom and their abundance, but this is a time-consuming process that collects only discrete point samples, sparsely distributed in space and time. Neither of these methods alone captures the rapid evolution of algal blooms, the spatial and temporal patchiness of their distributions, or their high local variability. In situ optical devices and imaging sensors mounted on mobile platforms such as autonomous underwater vehicles (AUVs) and uncrewed surface vehicles (USVs) capture fine-scale temporal trends in plankton communities, while uncrewed aerial vehicles (UAVs) complement satellite remote sensing. Use of such autonomous platforms offers the flexibility to react to local conditions with adaptive sampling techniques in order to examine the marine environments in real time. Here we present an integrated approach to observing blooms—an “observational pyramid”—that includes both classical and newer, complementary observation methods (Figure 1). We aim to identify trends in phytoplankton blooms in a region with strong aquaculture activity on the Atlantic coast of mid-Norway. Field campaigns were carried out in consecutive springs (2021 and 2022) in Frohavet, an area of sea sheltered by the Froan archipelago (Figure 2). The region is a shallow, highly productive basin with abundant fishing and a growing aquaculture industry. Typically, there are one or more large algal blooms here during the spring months. We use multi-instrumentation from macro- to a microscale perspectives, combined with oceanographic modeling and ground truthing, to provide tools for early algal bloom detection

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20 m) ranged from 0.01 to 8398 µmol C m−3 d−1 (with a geometric mean of 16.1 µmol C m−3 d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1 % surface irradiance) ranged from  < 0.1 to 6 mmol C m−2 d−1 (geometric mean 1.19 mmol C m−2 d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182
    corecore