241 research outputs found

    Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons

    Full text link
    We present the first inelastic neutron scattering study of the short wavelength dynamics in a phospholipid bilayer. We show that inelastic neutron scattering using a triple-axis spectrometer at the high flux reactor of the ILL yields the necessary resolution and signal to determine the dynamics of model membranes. The results can quantitatively be compared to recent Molecular Dynamics simulations. Reflectivity, in-plane correlations and the corresponding dynamics can be measured simultaneously to gain a maximum amount of information. With this method, dispersion relations can be measured with a high energy resolution. Structure and dynamics in phospholipid bilayers, and the relation between them, can be studied on a molecular length scale

    Parallel hardware architectures for the cryptographic Tate pairing

    Get PDF
    Identity-based cryptography uses pairing functions, which are sophisticated bilinear maps defined on elliptic curves. Computing pairings efficiently in software is presently a relevant research topic. Since such functions are very complex and slow in software, dedicated hard- ware (HW) implementations are worthy of being stud- ied, but presently only very preliminary research is avail- able. This work affords the problem of designing paral- lel dedicated HW architectures, i.e.,co-processors, for the Tate pairing, in the case of the Duursma-Lee algorithm in characteristic 3. Formal scheduling methodologies are applied to carry out an extensive exploration of the archi- tectural solution space, evaluating the obtained structures by means of different figures of merit such as computation time, circuit area and combinations thereof.Comparisons with the (few) existing proposals are carried out, show- ing that a large space exists for the efficient parallelHW computation of pairings

    Efficient software implementation of AES on 32-bit platforms

    Get PDF
    Rijndael is the winner algorithm of the AES contest; therefore it should become the most used symmetric-key cryptographic algorithm. One important application of this new standard is cryptography on smart cards. In this paper we present an optimisation of the Rijndael algorithm to speed up execution on 32-bits processors with memory constraints, such as those used in smart cards. First a theoretical analysis of the Rijndael algorithm and of the proposed optimisation is discussed, and then simulation results of the optimised algorithm on different processors are presented and compared with other reference implementations, as known from the technical literature

    Effect of an electric field on a floating lipid bilayer: a neutron reflectivity study

    Full text link
    We present here a neutron reflectivity study of the influence of an alternative electric field on a supported phospholipid double bilayer. We report for the first time a reproducible increase of the fluctuation amplitude leading to the complete unbinding of the floating bilayer. Results are in good agreement with a semi-quantitative interpretation in terms of negative electrostatic surface tension.Comment: 12 pages, 7 figures, 1 table accepted for publication in European Physical Journal E Replaced with with correct bibliograph

    Building a biomimetic membrane for neutron reflectivity investigation : complexity, asymmetry and contrast

    Get PDF
    The preparation and investigation of model membranes is deserving growing interest both for the physics of complex systems, and for biology. The need of simplified models should preserve mimicking the qualifying characteristics of biological membranes, and keep non-invasive and detailed description. As a main feature, biological membranes are non-homogeneous in the disposition of components, both in the lateral and in the transverse direction. We prepared asymmetric supported membranes containing GM1 ganglioside in biomimetic proportion according to different protocols. Then, we studied their internal structure by neutron reflectometry, providing few-Angstrom sensitivity in the cross direction meanwhile avoiding radiation damage. This technique can also be profitably applied to study interactions at the membrane surface. The best protocol has proven to be the Langmuir-Blodgett/Langmuir-Schaefer depositions. Notably, also the simpler and most accessible protocol of vesicle fusion was found to be suitable for straightforward and good quality deposition of compositionally asymmetric membranes

    Probing the polymer-electrode interface using neutron reflection

    Get PDF
    We demonstrate that neutron reflection (NR) can be used to characterize polymer films deposited on indium tin oxide (ITO). When the chloro precursor to poly[2-(2(')-ethylhexyloxy)5-methoxy-1,4-phenylenevinylene] (MEHPPV) was spin-coated onto ITO NR revealed that between the ITO and the uniform polymer layer was a 20 Angstrom thick low contact zone. We found that the conversion of the chloro precursor to MEHPPV at 180 degreesC under vacuum gave a uniform film of MEHPPV with the layer of low contact between the polymer and ITO remaining. Finally, the NR profile suggests that the blueshift in the MEHPPV absorption spectrum on ITO when compared to quartz is due to polymer morphology and not incomplete conversion. (C) 2003 American Institute of Physics

    Reflectivity from floating bilayers: can we keep the structural asymmetry?

    Get PDF
    To assess the structure of complex biomembranes, the use of asymmetric model systems is rare, due to the difficulty of realizing artificial membranes with desired heterogeneous composition and applicable for single membrane structural investigation. We developed an experimental model with a single macroscopic bilayer floating on top of another adhering to a silicon flat surface, prepared by Langmuir-Blodgett Langmuir-Schaefer technique, then investigated by neutron reflectivity. On the way to more complex systems, containing lipids of different nature, we tested whether a simple imposed asymmetry is kept in time and whether it can stand some standard experimental protocols commonly employed in treating model membranes. We focused on cholesterol, a basic component with a transverse distribution that is not symmetric in biomembranes, and may assume specific location in functional domains. So we forced different asymmetries in the "adhering + floating" bilayers system composed of phospholipids and cholesterol in bio-similar mole ratios. The neutron reflection accessible length-scale and its sensitivity, enhanced by the possibility to play with deuteration, allowed assessing the cross profile of the membrane and revealing that lipid redistribution can occur

    Dynamics of viscous amphiphilic films supported by elastic solid substrates

    Full text link
    The dynamics of amphiphilic films deposited on a solid surface is analyzed for the case when shear oscillations of the solid surface are excited. The two cases of surface- and bulk shear waves are studied with film exposed to gas or to a liquid. By solving the corresponding dispersion equation and the wave equation while maintaining the energy balance we are able to connect the surface density and the shear viscocity of a fluid amphiphilic overlayer with experimentally accessible damping coefficients, phase velocity, dissipation factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma

    The effect of the protein corona on the interaction between nanoparticles and lipid bilayers

    Get PDF
    Hypothesis It is known that nanoparticles (NPs) in a biological fluid are immediately coated by a protein corona (PC), composed of a hard (strongly bounded) and a soft (loosely associated) layers, which represents the real nano-interface interacting with the cellular membrane in vivo. In this regard, supported lipid bilayers (SLB) have extensively been used as relevant model systems for elucidating the interaction between biomembranes and NPs. Herein we show how the presence of a PC on the NP surface changes the interaction between NPs and lipid bilayers with particular care on the effects induced by the NPs on the bilayer structure. Experiments In the present work we combined Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) and Neutron Reflectometry (NR) experimental techniques to elucidate how the NP-membrane interaction is modulated by the presence of proteins in the environment and their effect on the lipid bilayer. Findings Our study showed that the NP-membrane interaction is significantly affected by the presence of proteins and in particular we observed an important role of the soft corona in this phenomenon

    Membrane restructuring following in situ sialidase digestion of gangliosides : complex model bilayers by synchrotron radiation reflectivity

    Get PDF
    Synchrotron radiation reflectometry was used to access the transverse structure of model membranes under the action of the human sialidase NEU2, down to the \uc5ngstr\uf6m length scale. Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in cholesterol and sphingolipids, and where also typical signalling molecules are hosted. Gangliosides, glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in GEMs, in the outer membrane leaflet where gangliosides are claimed to interact directly with growth-factor receptors, modulating their activation and then the downstream intracellular signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show that the outcome of the sialidase action is not limited to the emergence of lower-sialylated ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to control dynamically the structural properties of the membrane external leaflet of living cells, influencing both the morphology of the close environment and the extent of interaction among active molecules belonging to signalling platforms
    • …
    corecore