
Efficient Software Implementation of AES on
32-Bit Platforms�

Guido Bertoni1, Luca Breveglieri1, Pasqualina Fragneto2, Marco Macchetti3,
and Stefano Marchesin3

1 Politecnico di Milano , Milano, Italy
{bertoni,breveglieri}@elet.polimi.it

2 STMicroelectronics, Agrate B.za MI, Italy
{pasqualina.fragneto}@st.com

3 ALaRI Università della Svizzera Italiana, Lugano, Switzerland
{macchetti,marchesin}@alari.ch

Abstract. Rijndael is the winner algorithm of the AES contest; there-
fore it should become the most used symmetric-key cryptographic algo-
rithm. One important application of this new standard is cryptography
on smart cards. In this paper we present an optimisation of the Rijndael
algorithm to speed up execution on 32-bits processors with memory con-
straints, such as those used in smart cards. First a theoretical analysis of
the Rijndael algorithm and of the proposed optimisation is discussed, and
then simulation results of the optimised algorithm on different proces-
sors are presented and compared with other reference implementations,
as known from the technical literature.

1 Introduction

Rijndael, a block cipher algorithm designed by Vincent Rijmen and Joan Dae-
men [1], has been selected by NIST as the winner of the Advanced Encryption
Standard competition [2]. Although the initial specification of the algorithm in-
cludes 128-bits, 192-bits and 256-bits as possible lengths for both the plaintext
blocks and for the key material, the standard will consider only 128-bit as legal
block length. In this paper we shall deal only with 128-bits blocks.

According to [3], the basic information unit for processing in the Rijndael
algorithm is a byte, i.e. a sequence of eight bits treated as a single entity. The
bit sequences corresponding to the input, the output and the cipher key are
processed as arrays of bytes; these arrays are formed by dividing the sequences
into groups of eight contiguous bits. Internally, the operations of the algorithm
are performed on a two-dimensional array of bytes called ”State”. The State
array consists of four rows of bytes, each row containing 4 bytes. The Rijndael
cipher algorithm operates in rounds, a round being a fixed set of transformations
to be applied to the State array. The number of these rounds is chosen depending
on the key length and ranges from 10 to 14.
� Part of this work is under patenting process.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 159–171, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55163919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


160 G. Bertoni et al.

The Rijndael cipher algorithm is suited for an efficient implementation on
a wide range of processors. The basic operations involved in the algorithm are
very simple and the structure of the algorithm is straightforward. The Rijndael
algorithm can be used as encryption standard in embedded systems. One impor-
tant application field of the Rijndael algorithm is cryptography on smart cards.
Currently DES is used in such systems, but industry is moving to replace it with
the new AES algorithm.

The present paper considers optimised software implementations of the AES
algorithm for several platforms, with particular regard to smart cards. Memory
requirements are a fundamental issue when coding the Rijndael algorithm for
smart cards. In fact, the algorithm can be considerably sped-up by precomputing
part of the internal operations and storing the results in look-up tables. In our
case this means that we want to achieve the best possible performance with a
little amount of look-up tables, since in a smart card environment memory and
silicon space are limited resources. We also have to consider that the smart card
market is looking to 32-bits microprocessors as the new leading technology [5],
although a large amount of manufactured cards still features 8-bits and 16-bits
processors.

In this paper we shall describe a technique to enhance the time performances
of the AES algorithm when running on 32-bits processors with strict silicon
space constraints. This optimisation consists in a deep restructuring of the al-
gorithm, which makes possible to organise the inner operations (i.e. the rounds
and the byte-operations involved in each round) in a different way with respect
to the standard formulation [12] of the algorithm. This restructuring can be
nicely described in theoretical terms as a matrix transformation. The so-called
State matrix of AES is transposed and the inner operations of each round are
reorganised accordingly. Some inner operations are commuted with respect to
other ones, and are then grouped in such a way as to fit well in processors having
32-bits words. This optimisation allows a better exploitation of the resources of
the processor, and thus achieves also better time performances with respect to
the standard formulation [12] of the algorithm.

The optimised version of the algorithm was coded in C for evaluation on
various platforms, covering a wide range of possible applications. Namely, ARM
(a typical processor for embedded systems), ST 22 (one of the most advanced
32-bits processors for smart cards) and also Intel Pentium (typical for general
purpose systems) are considered. Simulations have been carried out for both
Gladman’s standard AES implementation in C code and our optimised AES
implementation, on all the previously mentioned platforms. Some other imple-
mentations of AES, known from the literature, are also considered. The time
performances obtained by simulation are summarized in tables, compared and
discussed. In several of the examined cases, such results are highly favourable to
our proposed optimised version of the AES algorithm.

This paper is organized as follows. Section 2 will provide a synthetic outline
of the Rijndael algorithm. Section 3 will describe and analyse theoretically our
new, optimised approach to the algorithm. In Section 4 we shall discuss our



Efficient Software Implementation of AES on 32-Bit Platforms 161

implementation in C code and we shall show simulation results and comparisons
with other implementations on various platforms. Section 5 concludes the paper.

2 Description of the Rijndael Algorithm

This section provides a brief recall of the AES algorithm (Rijndael, [1][2][3]),
useful for understanding the subsequent optimisations, which will be described
in section 3.

The core data structure of AES is the State matrix: it is a 4 * 4 bytes matrix.
As we have already said in the introduction, the Rijndael encryption algorithm
operates in rounds; a round is a fixed set of transformations that are applied to
the State matrix. The number of these rounds is chosen depending on the length
of the key; it is necessary to perform 10, 12 or 14 rounds in the cases of 128, 192
or 256-bits keys, respectively. For each round of the AES algorithm a round key
is derived from the original key; this process is called Key Scheduling.

The transformations that are applied in each round are four. According to
[6], they correspond to the round key addition step, the non-linear step, the
dispersion step and the diffusion step. They are described as follows.

AddRoundKey. In this transformation, a round key is added to the
State matrix by a simple bitwise XOR operation, that is, a sum in the field
GF (28). Each round key is obtained from the key schedule.

SubBytes. This transformation is a non-linear byte substitution operat-
ing independently on each byte of the State matrix, using a substitution table
(called S-BOX). This S-BOX, which is invertible, is constructed by composing
two transformations in GF (28), an inversion and an affine function.

ShiftRows. In this transformation, the bytes in the last three rows of
the State matrix are cyclically shifted over different numbers of bytes (offsets).
The first row, row 0, is not rotated. Row 1 is rotated to the left by 1 byte
position; row 2 is rotated to the left by 2 byte positions; row 3 is rotated to the
left by 3 byte positions.

MixColumns. This transformation operates on the State matrix in a
column-by-column mode, treating each column as a four-term polynomial
over GF (28). These polynomials are multiplied modulo (x4 + 1) with a fixed
polynomial a(x), given by the expression:

a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02

This polynomial is coprime to (x4 + 1), and therefore the transformation is
invertible. This transformation can be written under the form of a matrix multi-
plication. Pose s′

c(x) = a(x) ⊗ sc(x), for 0 ≤ c ≤ 3 , that is for all the 4 columns



162 G. Bertoni et al.

in the State matrix. As a result of this multiplication, the 4 bytes in a column c
are replaced by the following ones (for c = 0, 1, 2 and 3):

s′
0,c = 02 ∗ s0,c ⊕ 03 ∗ s1,c ⊕ s2,c ⊕ s3,c

s′
1,c = s0,c ⊕ 02 ∗ s1,c ⊕ 03 ∗ s2,c ⊕ s3,c

s′
2,c = s0,c ⊕ s1,c ⊕ 02 ∗ s2,c ⊕ 03 ∗ s3,c

s′
3,c = 03 ∗ s0,c ⊕ s1,c ⊕ s2,c ⊕ 02 ∗ s3,c

where the * operator stands for a multiplication in GF (28), with:

m(x) = x8 + x4 + x3 + x + 1

as irreducible generator polynomial. Performing a complete round means simply
applying these 4 transformations to the State matrix, in the following order:

round = {SubBytes, ShiftRows, MixColumns, AddRoundKey}

Performing the final round means simply applying to the State matrix the
following transformations, in the order:

finalround = {SubBytes, ShiftRows, AddRoundKey}

The Rijndael encryption algorithm consists in an initial application of the Ad-
dRoundKey operation, followed by (number of rounds - 1) rounds and concluded
with a final round. The Rijndael decryption algorithm operates by applying the
inverse of all the transformations described above in reverse order, to return to
the plaintext; for specific details, see [1].

3 A New Technique for Computing the Rijndael
Algorithm

This section illustrates our optimised version of the Rijndael AES algorithm.
Both the encryption and the decryption algorithms have been optimised. For
reasons of brevity, attention is focused on encryption, giving only the necessary
hints for understanding the way to optimise decryption as well. The task is
divided in two parts: optimisation of the algorithm working on the State matrix,
and modification of the key scheduling. In both cases, the base line consists in
the transposition of the State matrix, and the consequent rearranging of the
various transformations. In fact, as a consequence of the transposition of the
State matrix, also the key scheduling is rearranged in a suited way. In section 3.1
the algorithm optimisation is explained, while in section 3.2 the key scheduling
is considered.



Efficient Software Implementation of AES on 32-Bit Platforms 163

3.1 The Transposed State Matrix Primitives

It is possible to enhance the throughput of the implementation of AES by
changing the way in which data are represented by the software. In particular,
the internal transformations of a round could be implemented by using look-up
tables. In our study, we have chosen to reserve a little amount of space for
look-up tables: the choice is to tabularise only the S-BOX and the inverse S-BOX
transformations. All the remaining operations are computed. In particular,
this means that we must carry out several GF multiplications only by means
of software techniques. All the primitives considered in our study behave in a
peculiar way, operating on a transposed version of the State matrix. Of course,
all the steps of the algorithm must be modified in order to preserve global
functionality while operating on the transposed State matrix. In particular:

The SubBytes transformation is not modified, since it operates on sin-
gle bytes, independently of their position in the State matrix.

The ShiftRows transformation does not shift the rows of the State ma-
trix any longer; instead, it operates now in the same way on the columns.

The MixColumns transformation is deeply revised. Denote with xi, for
0 ≤ i ≤ 3, the 32-bits words (or columns) of the transposed State matrix before
applying the MixColumns transformation, and denote with yi, for 0 ≤ i ≤ 3,
the 32-bits words (or columns) of the transposed State matrix after applying
the MixColumns transformation. The revised version of MixColumns is then
represented by the following set of equations:

y0 = 02 ∗ x0 ⊕ 03 ∗ x1 ⊕ x2 ⊕ x3

y1 = x0 ⊕ 02 ∗ x1 ⊕ 03 ∗ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ 02 ∗ x2 ⊕ 03 ∗ x3

y3 = 03 ∗ x0 ⊕ x1 ⊕ x2 ⊕ 02 ∗ x3

The variables yi and xi contain the 4 bytes at position i of the columns of the
State matrix in the normal, non-transposed, version of the transformation. These
variables are 32 bits long. Note that here the symbol * does not denote an ordi-
nary GF multiplication over factors (polynomials) of 32 bits. Instead, here the
operator * denotes a set of 4 ordinary multiplications in the field GF (28), per-
formed in parallel on the 4 bytes of each 32-bits word. The generator polynomial
used for representing the field GF (28) is the standard one of AES.
A simple way to calculate all the above operations, composing the MixColumns
transformation, is to use the yi variable as an accumulator, and to use the xi

variable for storing the product of the initial values of xi and of the 4 partial
products: xi, 2 * xi, 4 * xi and 8 * xi. In the case of encryption the products to
be used in the calculation are only two: 20 and 21. Therefore the MixColumns



164 G. Bertoni et al.

transformation is computed in only 3 steps: a sum step, a doubling step and a
final sum step. Table 1 shows the three steps.

Table 1. The three steps necessary to compute MixColumns.

First Second Third
y0 = x1 ⊕ x2 ⊕ x3 x0 = 02 ∗ x0 y0⊕ = x0 ⊕ x1

y1 = x0 ⊕ x2 ⊕ x3 x1 = 02 ∗ x1 y1⊕ = x1 ⊕ x2

y2 = x0 ⊕ x1 ⊕ x3 x2 = 02 ∗ x2 y2⊕ = x2 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2 x3 = 02 ∗ x3 y3⊕ = x0 ⊕ x3

In the case of decryption this double-and-add method is used in a more
substantial way, and the steps necessary to compute the InvMixColumns trans-
formation are 7: 4 sum steps and 3 doubling steps. In the case of InvMixColumns
the double-and-add method can be improved by considering the particular
values of the constant coefficients. Note that there are only two coefficients
containing a bit 1 in the third position, namely the coefficients 0e and 0d. These
coefficients are used in combination with the operands x0 and x2 contained
both in the first row and in the third row, and are used in combination with the
operands x1 and x3 contained both in the second row and in the fourth row.
To save a doubling operation we can add these two operand pairs and store the
result in x0 and x1, respectively. Instead of calculating the subexpression 04 *
x0 ⊕ 04 ∗ x2, we can calculate the subexpression 04*(x0 ⊕ x2) , since we do not
need to store separately either addend. Moreover, note that every coefficient
contains a bit 1 in the fourth position. The last calculation deals with this
bit. Hence we can add the previously computed values x0 and x1, which are
04*(x0 ⊕ x2) and 04*(x1 ⊕ x3) , respectively, and then double them, so that the
subexpression 08*(x0 ⊕ x1 ⊕ x2 ⊕ x3) is obtained, which must be accumulated
to every operand yi.

The AddRoundKey transformation remains quite unchanged, since it
consists in a simple bitwise XOR between the State matrix and the round keys.
Of course, we have to ensure that round keys are transposed before being used,
which is shown in the next section.

3.2 The Transposed State Matrix Key Scheduling

As we stated before, we need to transpose the round keys before using them.
A trivial solution would be simply to apply the key scheduling and then to
transpose every created round key. In this way we would introduce a huge com-
putation overhead. One alternative, which is the implemented one, is to redesign
the key scheduling directly in the ”transposed manner”.



Efficient Software Implementation of AES on 32-Bit Platforms 165

For 128-bits keys the key scheduling operates intrinsically on blocks of 4 32-
bits words; we can calculate one new round key from the previous one. We denote
the ith word of the actual round key with K[i], where 0 ≤ i ≤ 3, and the ith

word of the next round key with K ′[i]. K ′[0] is computed by an XOR between
K[0], a constant rcon and K[3], the latter being pre rotated and transformed
using the S-BOX. The other three words K ′[1], K ′[2] and K ′[3] are calculated
as K ′[i] = K[i] ⊕ K ′[i − 1].

We must now rewrite this set of transformations to cope with transposed
keys. We indicate with KT the transposed round key we are working on, and
with K ′

T the new transposed key. Clearly we have:

KT[0] =




k0
k4
k8
k12


KT[1] =




k1
k5
k8
k13


KT[2] =




k2
k6
k9
k14


KT[3] =




k3
k7
k10
k15




The transposed key schedule is made up of the following transformations:

K ′
T [0] = KT [0] ⊕ (pad(Sbox(k13)) << 24) ⊕ rcon

K ′
T [1] = KT [1] ⊕ (pad(Sbox(k14)) << 24)

K ′
T [2] = KT [2] ⊕ (pad(Sbox(k15)) << 24)

K ′
T [3] = KT [3] ⊕ (pad(Sbox(k12)) << 24)

K ′
T [0] ⊕ = (KT [0] >> 8) ⊕ (KT [0] >> 16) ⊕ (KT [0] >> 24)

K ′
T [1] ⊕ = (KT [1] >> 8) ⊕ (KT [1] >> 16) ⊕ (KT [1] >> 24)

K ′
T [2] ⊕ = (KT [2] >> 8) ⊕ (KT [2] >> 16) ⊕ (KT [2] >> 24)

K ′
T [3] ⊕ = (KT [3] >> 8) ⊕ (KT [3] >> 16) ⊕ (KT [3] >> 24)

The symbol >> j (<< j) indicates a right (left) shift of j bit positions, with
the insertion of j bits of value 0 in the most (least) significant positions, while
pad means zero-padding of the 24 most significant bits of the word since Sbox
returns an 8 bits value. We can note that the computation overhead with respect
to the normal, non-transposed key scheduling is just few shift operations.

The key schedule for the other key sizes, i.e. 192 and 256-bits, is similar; note
however that in the 192-bits case the calculations to be performed are slightly
more complex. In fact, in this case it is necessary to operate on blocks of 6 32-
bits words, while the round keys to be generated in the transposed form occupy
4 words of 32-bits. To reduce the overhead our solution consists in using a full
array of 8 words of 32-bits for the calculations, as in the 256-bit key case. The
new round key (similarly to the old one) occupies the first 4 words and the top
half of the last 4 words. Then the words are suitably shifted and stored. The key
schedule for 256-bits keys is very similar to that for 128-bits keys and therefore
it will not be discussed here.



166 G. Bertoni et al.

4 Implementation and Time Performance Figures

We have a C/C++ implementation of our proposal of the AES optimised algo-
rithm. A simulation campaign has been carried out, in order to evaluate time
performances. We report the results of the AES optimised algorithm only in the
case of a key size of 128 bits, but we have tested the proposed algorithm also with
192 and 256-bits key size. The results are quite the same as those obtained with
128-bits key size, only scaled by a constant factor due to the larger number of
rounds required by these versions of the AES algorithm. The time performance
gain of each round, with respect to the standard AES algorithm, remains the
same in all the cases.

We have chosen to make a direct comparison with an equivalent version of
AES by Dr. Brian Gladman [8], since Gladman has been involved in the definition
of the AES standard and his version is well referenced. For the comparison
with embedded processors (ARM7, ARM9 and ST22) few refinements have been
added to Gladman original implementation in C language [8].

Our code has been compiled and evaluated on some 32-bits architectures, in-
cluding the ARM7TDMI and ARM9TDMI processors [7], the ST22 smart card
processor by ST Microelectronics [5], and also on a general purpose Intel Pen-
tiumIII platform. These three platforms represent rather different architectures
used in various systems and environments: embedded system, smart cards and
PC, respectively.

The ARM7TDMI processor is a widely used 32-bits RISC CPU. It contains
sixteen 32 bits registers. No cache is available and the internal structure consists
of a pipeline of 3 stages [7]. The ARM9 processor differs from ARM7 in the
internal structure. It is designed accordingly to the Harvard architecture model
with two different busses for data and instructions, respectively, and the core is
pipelined in 5 different stages. There exist different implementations of ARM9,
depending on the amount of cache memory. In our simulation the standard core
ARM9TDMI has been used, without cache memory, but the time latency for the
accesses to the memory is only of one clock cycle, while the code and the data
are stored in two different memories.

The ST 22 processor is a 32-bits RISC processor particularly designed for
smart cards. It is a dedicated processor and is not used for applications different
from smart cards. The internal details are not completely known; however the
processor contains some 32 bits registers and does not have cache memory [5].

PentiumIII is a typical processor for PC systems. It is a 32-bits processor with
a large amount of available memory, organized in three levels, with 32 kbytes
of cache memory at the first level (divided in two blocks of 16 kbytes for data
and instructions, respectively), with at least 256 kbytes of cache memory at the
second level, and with some megabytes of RAM as central memory [4].

In the Rijndael algorithm the encryption and decryption operations must be
executed using the round keys. For each round a different round key is used. The
process of deriving the round keys from the original key is called Key Schedul-
ing. The round key can be computed either in advance (key unrolling) or the
so-called ”on-the-fly” approach can be used. In the on-the-fly approach the var-



Efficient Software Implementation of AES on 32-Bit Platforms 167

ious round keys are computed exactly when they are needed, and soon after
they are discarded. In a software implementation of the Rijndael algorithm the
”on-the-fly” approach is not useful in terms of speed since the key schedule must
be performed for each data block to encrypt. Some particular systems, i.e. smart
cards, do not allow using memory to store the unrolled key, both for reasons
of security and of memory shortage. In those cases the on-the-fly approach is
mandatory. We have implemented our optimisation of AES in two versions: the
former one using key unrolling and the latter one using the on-the-fly approach.
In order to implement decryption following the on-the-fly approach, it is advis-
able to store the last round key, from which the previous round keys can be
reconstructed. This requires 16 bytes of memory. The alternative would be to
generate all the round keys before starting decryption, and then to use them in
reverse order; but this approach consumes more memory.

Since Gladman public C code for AES does not permit to use the on-the-
fly approach, we have extended Gladman code implementing also the on-the-fly
approach. In [12] it is possible to find some time performances of on-the-fly
encryption algorithm on the ARM processor for smart cards applications (the
so-called cAESar implementation, written in assembler language). The core pro-
cessor specified in the paper illustrating the cAESar implementation is not clearly
described but should be very similar to ARM7TDMI. As above mentioned, we
assume to tabularise in a look-up table only the S-BOX transformation; all the
other round transformations are computed as soon as they are needed, and the
result is not stored for future use. The amount of used look-up tables is thus
of 512 bytes for the S-BOX and the Inv-S-BOX, plus 10 bytes for the round
constants rcon.

We have used the ARM simulator (ARMulator), the ST 22 development
tools (courtesy by STM) and Microsoft Visual Studio 6.0. Table 2 shows the
time performances of our proposal of AES and of Gladman’s in the hypothesis
of adopting key unrolling. Table 3 shows the time performances of our proposal
of AES, Gladman’s and cAESar (only on ARM) in the hypothesis of adopting
the on-the-fly approach. In Table 2 Key Scheduling is listed separately from
Encryption and Decryption, since it is computed completely in advance. The
total time can be obtained by adding the key scheduling time to either the
encryption or the decryption time. In Table 3 the key scheduling time is already
included both in the encryption and the decryption time (since key scheduling
is in this case interleaved with encryption or decryption).

As explained before, the application of the Rijndael algorithm consists of
3 parts, namely key scheduling, encryption and decryption. Our proposal pro-
vided us with a speed gain in the MixColumns (during encryption) and InvMix-
Columns (during decryption) transformations, requiring only few changes to the
key scheduling. In general these two operations work as follows. A single Mix-
Columns is a composition of sums and doublings in the field GF (28), plus some
rotations of the elements of the column. A sum in GF (28) is a bitwise XOR of
bytes and a doubling is a composition of a masking, a shift and a conditional
bitwise XOR of bytes. Since a column is composed by 4 elements of the field



168 G. Bertoni et al.

GF (28), some operations can be applied in parallel to the entire column, as the
whole column can be accommodated in a single register of the CPU. The InvMix-
Columns works in a similar way. Gladman implementation of MixColumns and
InvMixColumns are applied to each one of the 4 columns of the State matrix.

Examining the Gladman implementation of MixColums, which uses the stan-
dard representation of the State matrix, it is possible to count the number of
required operations. On a 32 bits platform a single MixColums requires 4 bit-
wise XORs plus one doubling of the four GF (28) elements and 3 rotations. The
MixColumns must be applied to the 4 columns giving a total of 16 XORs, 4
doublings and 12 rotations. Moreover, the original Gladman implementation re-
quires an additional intermediate variable, which could be eliminated; therefore
we shall not consider it.

Our optimisation of AES allows reducing the number of elementary opera-
tions. Using the transposed State matrix the rotations can be completely avoided
(see sub-section 3.1) both in MixColumns and in InvMixColumns, thus yielding
a speed gain. Moreover, in the InvMixColums the transposed State matrix al-
lows to achieve a much higher speed gain. In fact, the transposed InvMixColums
requires only 7 doublings and 27 sums, while in the standard (Gladman) imple-
mentation it is necessary to compute 12 doublings, 32 sums, 12 rotations and
4 intermediate variables are required. This means that using in decryption a
transposed State matrix it is possible to obtain a reduction of 5 doublings, 5
sums and 12 rotations, and to eliminate completely the intermediate variables.
This yields a further speed gain.

As a general comment, our proposal implementation of AES works much
better than Gladman’s in decryption for all platforms, both using key unrolling
and key on-the-fly. In encryption the performances are instead more or less
comparable. Table 2 and Table 3 need some more explanations, in order to relate
the differences of time performances with the features of the adopted processor.
Here they follow.

Table 2. Clock cycles required for AES on different platforms (using key unrolling).

CPU Implementation Key Schedule Encryption Decryption
ARM7TDMI Our Proposal 634 1675 2074

Gladman 449 1641 2763
ARM9TDMI Our Proposal 499 1384 1764

Gladman 333 1374 2439
ST22 Our Proposal 0.22 0.51 0.60

Gladman 0.13 0.61 1
Pentium III Our Proposal 370 1119 1395

Gladman 396 1404 2152
Gladman with tables 202 (encrypt.) 362 381

306 (decrypt.)



Efficient Software Implementation of AES on 32-Bit Platforms 169

Table 3. Clock cycles required for AES on different platforms (using key on-the-fly).

CPU Implementation Encryption Decryption
ARM7TDMI Our Proposal 2074 2378

Gladman 1950 3221
ARM cAESar 2889 N.A.

cAESar with tables 1467 N.A.
ARM9TDMI Our Proposal 1755 1976

Gladman 1623 2796
ST22 Our Proposal 0.72 0.82

Gladman 0.75 1.13

ARM. The report and the discussion of the time performances start by con-
sidering the ARM processor. On this system our optimised version of AES is
slightly slower then Gladman’s as for encryption. This can be theoretically justi-
fied as follows: our encryption algorithm should be advantageous with respect to
Gladman’s, because it saves some rotation steps. But if the processor has some
dedicated machine instruction able to combine bitwise XOR and rotation (like
ARM7TDMI), then the advantage of having fewer rotations tends to disappear.
However, when the algorithm is written in C, our implementation frequently
executes additions (XOR) involving 3 operands of 32 bits each one. This fact
can lead to a non-optimal use of the pipeline of the processor, and hence to
degrade the performances of our optimised version of AES with respect to Glad-
man’s. However, in decryption our proposal is considerably more efficient than
Gladman’s. The core of the ARM9 system is similar to the one of ARM7, but
is more powerful, thus giving better results in comparison to ARM7. However,
the performance ratios between our optimised version and Gladman’s version
for ARM9 remain approximately the same as those for ARM7.

ST 22, by ST Microelectronics, is an advanced smart card CPU. This pro-
cessor is a 32-bits RISC CPU, having some 32 bits registers but without cache
memory. Simulations have been carried out by using the ST 22 C compiler (cour-
tesy by ST Microelectronics). It must be noted that ST 22 is not able to combine
addition and shift (or rotate) in a single machine instruction. This means that
ST 22 lacks instructions fitting particularly to the Gladman AES implementa-
tion. This fact impacts negatively on encryption when performing the simulation
of the Gladman version of AES, while encryption in our optimised version does
not suffer any penalty. On the other side, Gladman key scheduling is not af-
fected by this feature of the processor, as it does not use shifts and rotations,
while our version of key scheduling is affected negatively. The time performances
are still comparable as for key scheduling and encryption, while they are much
in favour to our optimised version as for decryption. For reasons of privacy, the
performance figures are normalised to 1, instead of reporting the absolute values.

PentiumIII. As a last comparison we report the time performances on the
PentiumIII processor. Note that in such a system an implementation with a



170 G. Bertoni et al.

complete replacement of the calculations with look-up tables is faster then our
implementation. Therefore we report 3 versions: ”Gladman with tables” (all
transformations are tabularised in look-up tables), Gladman and our proposal,
both of which use look-up tables only for the S-BOX and Inv-S-BOX transfor-
mations. We remember that the Gladman implementation using tables for all
the transformations requires a very large amount of memory, of about 20 kbytes.
This usage of memory is not affordable in systems as smart cards.

It is possible to see that our optimised version of AES works well in most
cases, with few exceptions. In general the largest performance gains are obtained
for decryption. However, even in those cases where our AES version behaves
worse than Gladman’s, the difference is limited and is by far less relevant than
the considerable performance gain obtained in the case of decryption. Moreover,
our proposal includes some initial and final code for transposing the State matrix
(that is, the data block). The initial transposition code requires about 20 cycles
for all platforms, and similarly the final transposition code. The transposition
code is required for making our AES optimisation equivalent to the standard one.
However, should the data block to encrypt be supplied directly in transposed
form, the transposition code could be stripped off.

5 Conclusions

An optimised version of the AES standard has been presented, coded in C and
evaluated by simulation on various platforms: ARM for embedded systems, ST 22
for smart card applications and also Intel Pentium for general purpose systems.
We have rewritten the basic transformations of the Rijndael cipher algorithm,
using a transposed version of the so-called State matrix. We have shown that
this relevant structural modification leads to a considerable improvement of time
performances in decryption. As for encryption, the time performances of our
version of AES and Gladman’s are instead more or less the same. These results
hold when a limited part of the AES computation is carried out using look-up
tables. Namely we have supposed that only the S-BOX operation is tabularised
and stored in a look-up memory.

In the other cases, that is when a considerable part of the algorithm is ex-
ecuted by using look-up tables, our proposal of AES and Gladman’s become
approximately equivalent. It must be noted, anyway, that using a large amount
of memory for the look-up tables is too expensive for small systems, like for
instance smart cards, and is considered unsafe, as monitoring the accesses to the
look-up tables may in some cases allow to infer the key. Therefore, at least for
these applications the choice of not resorting to look-up tables should be con-
sidered reasonable. Next research directions include for instance the hardware
evaluation, in terms of silicon area and time latency, of our optimisation of AES,
with respect to the standard implementation, and possibly the design of a suited
instruction set targeted to a fast computation of AES.



Efficient Software Implementation of AES on 32-Bit Platforms 171

References

1. J. Daemen, V. Rijmen , ”AES Proposal: Rijndael”,
http://csrc.nist.gov/encryption/aes/, 1999

2. NIST, “Announcing the ADVANCED ENCRYPTION STANDARD (AES),” Fed-
eral Information Processing Standards Publication, n. 197, November 26, 2001.

3. B. Gladman, “A Specification for Rijndael, the AES Algorithm”
http://fp.gladman.plus.com/, 2001.

4. Intel Ltd. website, www.intel.com
5. STMicroelectronics website, www.st.com
6. J. Daemen, V. Rijmen, “Efficient Block Ciphers for Smart-Cards”,Workshop on

Smartcard Technology (Smartcard ’99), pp. 29–36, USENIX Eds., 1999
7. ARM Ltd. website, www.arm.com
8. B. Gladman, available at

http://fp.gladman.plus.com/cryptography technology/rijndael/
9. D. Whiting, B. Schneier, S. Bellovin, “AES Key Agility Issues in High-Speed IPsec

Implementations,” Counterpane Internet Security,
http://www.counterpane.com/aes-agility.html, 2000.

10. G. Hachez, F. Koeune, J. J. Quisquater, “cAESar Results: Implementation of Four
AES Candidates on Two Smart-Cards”, http://csrc.nist.gov/encryption/aes/,
1999

11. J. Daemen, V. Rijmen, “The Block Cipher Rijndael,” in LNCS 1820, Smart-Card
Research and Applications, pp. 288–296, J. Quisquater and B. Schneier, Eds.,
Springer-Verlag, 2000.

12. J. Daemen, V. Rijmen, “Rijndael, the Advanced Encryption Standard,” Dr. Dobb’s
Journal, Vol. 26, No. 3, March 2001, pp. 137–139

13. M. Akkar, C. Giraud, “An Implementation of DES and AES, Secure against some
Attacks,” Proceedings of CHES ’01, pp. 315–325, 2001.

14. M. McLoone, J. McCanny, “High Performance single-Chip FPGA Rijndael Algo-
rithm Implementations,” Proceedings of CHES ’01, pp. 68–80, 2001.

15. V. Fischer, M. Drutarovsky, “Two Methods of Rijndael Implementation in Recon-
figurable Hardware,” Proceedings of CHES ’01, pp. 81–96, 2001.

16. H. Kuo, I. Verbauwhede, “Architectural Optimization for a 1.82Gbits/sec VLSI
Implementation of the AES Rijndael Algorithm,” Proceedings of CHES ’01, pp.
53–67, 2001.

17. A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, P. Rohatgi, “Efficient Ri-
jndael Encryption Implementation with Composite Field Arithmetic,” Proceedings
of CHES ’01, pp. 175–188, 2001.

18. A. Dandalis, V.K. Prasanna, J.P.D. Rolim, “An adaptive cryptographic Engine
for IPSec Architecutures” Field-Programmable Custom Computing Machines, 2000
IEEE Symposium on, pp. 132–141, 2000.


	Introduction
	Description of the Rijndael Algorithm
	A New Technique for Computing the Rijndael Algorithm
	The Transposed State Matrix Primitives
	The Transposed State Matrix Key Scheduling

	Implementation and Time Performance Figures
	Conclusions

