3,400 research outputs found

    On thermal nucleation of quark matter in compact stars

    Full text link
    The possibility of a hadron-quark phase transition in extreme astrophysical phenomena such as the collapse of a supernova is not discarded by the modern knowledge of the high-energy nuclear and quark-matter equations of state. Both the density and the temperature attainable in such extreme processes are possibly high enough to trigger a chiral phase transition. However, the time scales involved are an important issue. Even if the physical conditions for the phase transition are favorable (for a system in equilibrium), there may not be enough time for the dynamical process of phase conversion to be completed. We analyze the relevant time scales for the phase conversion via thermal nucleation of bubbles of quark matter and compare them to the typical astrophysical time scale, in order to verify the feasibility of the scenario of hadron-quark phase conversion during, for example, the core-collapse of a supernova.Comment: 6 pages, 4 figures, talk given at the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    Nucleation of quark matter in protoneutron star matter

    Full text link
    The phase transition from hadronic to quark matter may take place already during the early post-bounce stage of core collapse supernovae when matter is still hot and lepton rich. If the phase transition is of first order and exhibits a barrier, the formation of the new phase occurs via the nucleation of droplets. We investigate the thermal nucleation of a quark phase in supernova matter and calculate its rate for a wide range of physical parameters. We show that the formation of the first droplet of a quark phase might be very fast and therefore the phase transition to quark matter could play an important role in the mechanism and dynamics of supernova explosions.Comment: v3: fits version published in Physical Review

    Effects from inhomogeneities in the chiral transition

    Full text link
    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.Comment: 11 pages, 5 figures. v2: appendix and references added, published versio

    Formation of ions by high energy photons

    Get PDF
    We calculate the electron energy spectrum of ionization by a high energy photon, accompanied by creation of electron-positron pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energies. At the photon energies exceeding a certain value ω0\omega_0 this appeares to to be the dominant mechanism of formation of the ions. The dependence of ω0\omega_0 on the value of nuclear charge is obtained. Our results are consistent with experimental data.Comment: 16 pages, 6 figure

    The charge ordered state in half-doped Bi-based manganites studied by 17^{17}O and 209^{209}Bi NMR

    Full text link
    We present a 209^{209}Bi and 17^{17}O NMR study of the Mn electron spin correlations developed in the charge ordered state of Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3}. The unusually large local magnetic field 209Hloc^{209}H_{loc} indicates the dominant 6s26s^{2} character of the lone electron pair of Bi3+^{3+}-ions in both compounds. The mechanism connecting the ss character of the lone pairs to the high temperature of charge ordering TCOT_{CO} is still not clarified. The observed difference in 209Hloc^{209}H_{loc} for Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} to Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3} is probably due to a decrease in the canting of the staggered magnetic moments of Mn3+^{3+}-ions from. The modification of the 17^{17}O spectra below TCOT_{CO} demonstrates that the line due to the apical oxygens is a unique local tool to study the development of the Mn spin correlations. In the AF state the analysis of the 17^{17}O spectrum of Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} prompts us to try two different theoretical descriptions of the charge-ordered state, a site-centered model for the first manganite and a bond-centered model for the second one.Comment: 10 pages, 7 figure

    Electromagnetic field evolution in relativistic heavy-ion collisions

    Full text link
    The hadron string dynamics (HSD) model is generalized to include the creation and evolution of retarded electromagnetic fields as well as the influence of the magnetic and electric fields on the quasiparticle propagation. The time-space structure of the fields is analyzed in detail for non-central Au+Au collisions at sNN=\sqrt{s_{NN}}=200 GeV. It is shown that the created magnetic field is highly inhomogeneous but in the central region of the overlapping nuclei it changes relatively weakly in the transverse direction. For the impact parameter b=b=10 fm the maximal magnetic field - perpendicularly to the reaction plane - is obtained of order eBy/mπ2eB_y/m_\pi^2\sim5 for a very short time \sim 0.2 fm/c, which roughly corresponds to the time of a maximal overlap of the colliding nuclei. We find that at any time the location of the maximum in the eByeB_y distribution correlates with that of the energy density of the created particles. In contrast, the electric field distribution, being also highly inhomogeneous, has a minimum in the center of the overlap region. Furthermore, the field characteristics are presented as a function of the collision energy and the centrality of the collisions. To explore the effect of the back reaction of the fields on hadronic observables a comparison of HSD results with and without fields is exemplified. Our actual calculations show no noticeable influence of the electromagnetic fields - created in heavy-ion collisions - on the effect of the electric charge separation with respect to the reaction plane.Comment: 17 pages, 22 figures, title changed by editor, accepted for PR

    77^{77}Se NMR measurements of the πd\pi -d exchange field in the organic conductor λ\lambda-(BETS)2_{2}FeCl4_{4}

    Full text link
    77^{77}Se-NMR spectrum and frequency shift measurements in the paramagnetic metal (PM) and antiferromagnetic insulating (AFI) phases are reported for a small single crystal of the organic conductor λ\lambda-(BETS)2_{2}FeCl4_{4} as a function of temperature (TT) and field alignment for an applied magnetic field B0B_{0} = 9 T. The results show that in the low TT limit, where the localized Fe3+^{3+} spins (SdS_{d} = 5/2) are almost fully polarized, the conduction electrons (Se π\pi-electrons, spin sπs_{\pi} = 1/2) in the BETS molecules experience an exchange field (B\bf{B}πd_{\pi d}) from the Fe3+^{3+} spins with a value of - 32.7 ±\pm 1.5 T at 5 K and 9 T aligned opposite to B\bf{B}0_{0}. This large negative value of B\bf{B}πd_{\pi d} is consistent with that predicted by the resistivity measurements and supports the Jaccarino-Peter internal field-compensation mechanism being responsible for the origin of field-induced superconductivity.Comment: 4 pages, 5 figures, submitted to Physical Review Letter

    Strange quark matter in explosive astrophysical systems

    Full text link
    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bounce evolution of core-collapse supernovae and introduce the effects from strong interactions to increase the maximum mass of hybrid stars. In the MIT bag model, together with the strange quark mass and the bag constant, the strong coupling constant αs\alpha_s provides a parameter to set the beginning and extension of the quark phase and with this the mass and radius of hybrid stars.Comment: 6 pages, 5 figures, talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 2009, to be published in Journal Phys.

    Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067

    Get PDF
    PG 0014+067 is one of the most promising pulsating subdwarf B stars for seismic analysis, as it has a rich pulsation spectrum. The richness of its pulsations, however, poses a fundamental challenge to understanding the pulsations of these stars, as the mode density is too complex to be explained only with radial and nonradial low degree (l < 3) p-modes without rotational splittings. One proposed solution, for the case of PG 0014+067 in particular, assigns some modes with high degree (l=3). On the other hand, theoretical models of sdB stars suggest that they may retain rapidly rotating cores, and so the high mode density may result from the presence of a few rotationally-split triplet (l=1), quintuplet (l=2) modes, along with radial (l=0) p-modes. To examine alternative theoretical models for these stars, we need better frequency resolution and denser longitude coverage. Therefore, we observed this star with the Whole Earth Telescope for two weeks in October 2004. In this paper we report the results of Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067. We find that the frequencies seen in PG 0014+067 do not appear to fit any theoretical model currently available; however, we find a simple empirical relation that is able to match all of the well-determined frequencies in this star.Comment: 19 pages, preprint of paper accepted for publication in The Astrophysical Journa
    corecore