118 research outputs found
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
π
+
electroproduction reaction
γ
∗
p
→
n
π
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Q
2
,
cos
(
θ
∗
)
, and
ϕ
∗
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Towards a resolution of the proton form factor problem: new electron and positron scattering data
There is a significant discrepancy between the values of the proton electric
form factor, , extracted using unpolarized and polarized electron
scattering. Calculations predict that small two-photon exchange (TPE)
contributions can significantly affect the extraction of from the
unpolarized electron-proton cross sections. We determined the TPE contribution
by measuring the ratio of positron-proton to electron-proton elastic scattering
cross sections using a simultaneous, tertiary electron-positron beam incident
on a liquid hydrogen target and detecting the scattered particles in the
Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide
range in virtual photon polarization () and momentum transfer
() simultaneously, as well as to cancel luminosity-related systematic
errors. The cross section ratio increases with decreasing at . This measurement is consistent with the size of the form
factor discrepancy at GeV and with hadronic calculations
including nucleon and intermediate states, which have been shown to
resolve the discrepancy up to GeV.Comment: 6 pages, 4 figures, submitted to PR
Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region
We report the first beam-target double-polarization asymmetries in the γ þ nðpÞ → π− þ pðpÞ reaction
spanning the nucleon resonance region from invariant mass W ¼ 1500 to 2300 MeV. Circularly polarized
photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the
CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been
extracted using three very different analyses that show excellent agreement, and these have been used to
deduce the E polarization observable for an effective neutron target. These results have been incorporated
into new partial wave analyses and have led to significant revisions for several γnN* resonance
photocouplings
Measurement of the neutron F2 structure function via spectator tagging with CLAS
We report on the first measurement of the F2 structure function of the
neutron from semi-inclusive scattering of electrons from deuterium, with
low-momentum protons detected in the backward hemisphere. Restricting the
momentum of the spectator protons to < 100 MeV and their angles to < 100
degrees relative to the momentum transfer allows an interpretation of the
process in terms of scattering from nearly on-shell neutrons. The F2n data
collected cover the nucleon resonance and deep-inelastic regions over a wide
range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear
corrections estimated to be less than a few percent. These measurements provide
the first determination of the neutron to proton structure function ratio
F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page
Deep exclusive electroproduction off the proton at CLAS
The exclusive electroproduction of above the resonance region was
studied using the Large Acceptance Spectrometer () at
Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a
hydrogen target. The large acceptance and good resolution of ,
together with the high luminosity, allowed us to measure the cross section for
the process in 140 (, , ) bins:
, 1.6 GeV GeV and 0.1 GeV
GeV. For most bins, the statistical accuracy is on the order of a few
percent. Differential cross sections are compared to two theoretical models,
based either on hadronic (Regge phenomenology) or on partonic (handbag diagram)
degrees of freedom. Both can describe the gross features of the data reasonably
well, but differ strongly in their ingredients. If the handbag approach can be
validated in this kinematical region, our data contain the interesting
potential to experimentally access transversity Generalized Parton
Distributions.Comment: 18pages, 21figures,2table
Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive production
We present studies of single-spin asymmetries for neutral pion
electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV
polarized electrons from an unpolarized hydrogen target, using the CEBAF Large
Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator
Facility. A substantial amplitude has been measured in the
distribution of the cross section asymmetry as a function of the azimuthal
angle of the produced neutral pion. The dependence of this amplitude
on Bjorken and on the pion transverse momentum is extracted with
significantly higher precision than previous data and is compared to model
calculations.Comment: to be submitted PL
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
Light Vector Mesons in the Nuclear Medium
The light vector mesons (, , and ) were produced in
deuterium, carbon, titanium, and iron targets in a search for possible
in-medium modifications to the properties of the meson at normal nuclear
densities and zero temperature. The vector mesons were detected with the CEBAF
Large Acceptance Spectrometer (CLAS) via their decays to . The rare
leptonic decay was chosen to reduce final-state interactions. A combinatorial
background was subtracted from the invariant mass spectra using a
well-established event-mixing technique. The meson mass spectrum was
extracted after the and signals were removed in a nearly
model-independent way. Comparisons were made between the mass spectra
from the heavy targets () with the mass spectrum extracted from the
deuterium target. With respect to the -meson mass, we obtain a small
shift compatible with zero. Also, we measure widths consistent with standard
nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table
- …