408 research outputs found

    Middle Pleistocene to Holocene activity of the Gondola Fault Zone (Southern Adriatic Foreland): deformation of a regional shear zone and seismotectonic implications

    Get PDF
    Recent seismicity in and around the Gargano Promontory, an uplifted portion of the southern Adriatic Foreland domain, indicates active E-W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E-W–trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene-Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic-stratigraphic data, have led to the identification of fold growth and fault propagation in Middle-Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E-W branch of the Gondola Fault Zone. We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise-Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour

    Middle Pleistocene to Holocene activity of the Gondola Fault Zone (Southern Adriatic Foreland): deformation of a regional shear zone and seismotectonic implications

    Get PDF
    Recent seismicity in and around the Gargano Promontory, an uplifted portion of the Southern Adriatic Foreland domain, indicates active E–W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E–W-trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene–Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic–stratigraphic data, have led to the identification of fold growth and fault propagation in Middle–Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E–W branch of the Gondola Fault Zone. We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the Southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise–Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour

    Shaking Scenarios from Multiple Source Models Shed Light on the 8 September 1905 Mw 7 Calabria Earthquake (Southern Italy)

    Get PDF
    4noThe earthquake (Mw 7) that struck western Calabria (southern Italy) on 8 September 1905 profoundly struck a broad region, causing 557 deaths, injuring more than 2000 people, and leaving about 300,000 people homeless. Historical documents also reported a tsunami, although not devastating, for which effects were observed both along the coast and offshore. For all the damage it caused, this event was much studied but not fully explained. Literature source models for the 1905 earthquake are numerous and diverse, in fault geometry, location, and even associated magnitude. They also differ in nature, because these solutions are either field-based or derived from tsunami modeling and macroseismic data inversion. Above all, few or none of the previously published source models appear to be fully compatible with the damage pattern caused by this earthquake. To contribute to the identification of the seismogenic source of this destructive event, we computed a series of ground-shaking scenarios based on the different fault-source models that various authors associated with this event. The only documented data available that are suitable for our comparative purposes are the macroseismic intensities associated with localities affected by the event. Our results show that shaking scenarios for two out of seven literature source models are compatible with the damage distribution caused by the 1905 earthquake. The different parameters and boundary conditions constraining these two solutions suggest that either seismogenic source should include further complexities. Alternatively, because these two sources are antithetic and partially form a graben, they might have kinematically interacted, if passively, on 8 September 1905. Also, our critical analysis attempts to take site effects into account, at least qualitatively, allowing a more robust evaluation of damage distribution against numerical models.openembargoed_20160430Sandron, Denis; Loreto, Maria Filomena; Fracassi, Umberto; Tiberi, LaraSandron, Denis; Loreto, Maria Filomena; Fracassi, Umberto; Tiberi, Lar

    Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol

    Get PDF
    Nowadays, bisphosphonates are considered the drugs of choice for the treatment of several bone disorders. Their exact mechanism of action is not clear but recently it has been reported that the aminobisphosphonates inhibit cholesterol biosynthesis and that this might be relevant for their actions on bone osteoclasts. The study includes 87 postmenopausal women with moderate to severe osteoporosis. The patients were randomly assigned to intravenous (iv) infusion of 50 mg of the aminobisphosphonate Neridronate dissolved in 100 ml of saline solution every 2 months for a year (44 patients). The remaining 43 served as controls. At the time of each infusion blood samples were obtained for the evaluation of total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), apolipoprotein A-I (Apo A-I), apolipoprotein B (Apo B), and total and bone alkaline phosphatase (AP). Free deoxypyridinoline (f-DPD) was measured in fasting urine specimens. In the control group no significant changes were observed throughout the study period for any of the biochemical variables. In the Neridronate-treated patients both bone AP and f-DPD excretion fell significantly by 15-20%. In these patients serum total cholesterol and serum triglycerides showed marginal decreases, which were occasionally significant. LDL-C and Apo B fell by 5-6% and these changes were statistically significant at most time points. Apo A-I and HDL-C rose progressively with time. At the 12th month, HDL-C rose 17-18% (p < 0.0001) above the baseline values. Similar findings were obtained in four postmenopausal women given high iv doses of Pamidronate or Alendronate. In conclusion aminobisphophonates, at least when given iv, induce remarkable and unexpected effects on lipid metabolism with a final profile that might be clinically relevant

    Effects of environmental and electric perturbations on the pKa of thioredoxin cysteine 35: a computational study

    Get PDF
    Here we present a theoretical-computational study dealing with the evaluation of the pKa of the Cysteine residues in Thioredoxin (TRX) and in its complex with the Thioredoxin-interacting protein (TXNIP). The free energy differences between the anionic and neutral form of the Cysteine 32 and 35 have been evaluated by means of the Perturbed Matrix Method with classical perturbations due to both the environment and an exogenous electric field as provided by Molecular Dynamics (MD) simulations. The evaluation of the free energies allowed us to show that the effect of the perturbing terms is to lower the pKa of Cysteine 32 and Cysteine 35 with respect to the free amino-acid. On the other hand, in the complex TRX-TXNIP, our data show an enhanced stabilization of the neutral reduced form of Cys 35. These results suggest that external electric stimuli higher than 0.02 V/nm can modulate the Cysteine pKa, which can be connected to the tight regulation of the TRX acting as an antioxidant agent

    Las Carabidae (Insecta, Coleoptera) de los suelos del Bajo Delta Bonaerense del Río Paraná : Estado actual de su conocimiento

    Get PDF
    Fil: Cicchino, Armando Conrado. División Entomología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Nanni, Analía S.. Instituto de Investigación e Ingeniería Ambiental. Universidad Nacional de San Martín; ArgentinaFil: Fracassi, Natalia G.. EEA INTA. Campana; ArgentinaFil: Quintana, Rubén D.. Laboratorio de Ecología Regional. Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; Argentin

    Seismotectonics of the Southern Apennines and Adriatic foreland: insights on active regional E-W shear zones from analogue modeling

    Get PDF
    The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines

    Modes of fault reactivation from analogue modeling experiments: implications for the seismotectonics of the southern Adriatic foreland (Italy)

    Get PDF
    The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of increasing displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional EW dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines

    Quantitative analysis of extensional joints in the southern Adriatic foreland (Italy), and the active tectonics of the Apulia region

    Get PDF
    The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 - σ3)/(σ1 - σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64-0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ~N43°E; R is high, between 0.85-0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently <0.30, indicating a sort of horizontal „radial‟ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area

    Vitamin D and rheumatic diseases.

    Get PDF
    Vitamin D has some well-known effects on calcium, phosphate and bone metabolism, but it has recently shown to have many other effects, which may potentially be relevant to patients with extra-skeletal rheumatic diseases. Such effects may be justified by: 1) the presence of the vitamin D receptors also on extra-osseous cells, such as cartilage cells, sinoviocytes, muscle cells; 2) the proven role of vitamin D in the control of the transcription of genes involved in rheumatic diseases; 3) the evidence that vitamin D has multiple endocrine effects not only on calcium homeostasis; 4) the activation of vitamin D not only in the kidneys, but also in monocyte-macrophage and lymphocytic cell lines and in some epithelial cells with additional intracrine and paracrine effects. Vitamin D deficiency has been reported in numerous metabolic, degenerative, inflammatory and autoimmune rheumatic diseases. In some cases this association was also related to the risk of developing a rheumatic disease or the degree of disease activity. However there is no conclusive evidence of the efficacy of a preventive or therapeutic strategy based on vitamin D supplementation in extra-skeletal rheumatic diseases. This review aims to provide an overview of the latest evidence concerning the relationship between vitamin D and the most relevant rheumatic diseases
    • …
    corecore