273 research outputs found

    Size distribution of fine particles in stack emissions of a 600-MWe coal-fired power plant

    Get PDF
    International audienceMonitoring emissions of particles with a diameter smaller than 10 µm (PM10) has become of growing interest. However, measuring such particles is rather difficult. It appears as a result necessary to develop and assess measurement methods for the monitoring of PM10 from stack and fugitive emissions. The aim of the GAEC program [Granulométrie des Aérosols dans les Emissions Canalisées: Aerosol size distribution from stack emissions] is double: to develop monitoring methods and improve knowledge on fine particulate stack emissions. Three institutes were involved in the program: Séchaud Environnement (formerly LECES), INERIS and CERTAM. This paper presents the mains results of the evaluation of a cascade impactor (Johnas), aerosol size distribution measurement techniques (ELPI Dekati, FPS, SMPS TSI) applied on size characterization of fine particulate matter in stack emissions of a 600-MWe coal-fired power plant

    Knee MR-arthrography in assessment of meniscal and chondral lesions

    Get PDF
    SummaryIntroductionNo study, so far in France, has investigated the diagnosis value of knee MR-arthrography since the recent approval of intra-articular gadolinium use, by this country's healthcare authorities. This study objective is to verify the MR-arthrography superiority on conventional knee MRI, in meniscus and cartilage knee lesions diagnosing accuracy both in regard to sensitivity and specificity.HypothesisMR-arthrography, represents in some pathologic situations, a more accurate source of information than conventional MRI.Materials and methodsOver a 27 months period, 25 patients, scheduled to undergo a knee arthroscopy volunteered, after having been fully informed of the possible interest and risk of the MR-arthrography examination, to participate in this study. Twenty-one of them were finally included since in four cases the surgical indication was not confirmed. The group consisted of 15 males and six females with an average age of 35.7 years. All of them consecutively underwent conventional MRI, MR-arthrography finally followed by arthroscopy. The MRI and MR-arthrograms results were compared to the arthroscopy findings using the nonparametric Kappa test.ResultsTo diagnose meniscal tears, statistical agreement measure for MRI with arthroscopy was good (K=0.69) but not as good as the MR-arthrography/arthroscopy agreement which, by itself was excellent (K=0.84). As a diagnosis tool, the sensitivity and specificity of MR-arthrography (respectively 100 and 89.6%) were much higher than the corresponding values observed in conventional MRI (92.3 and 82.8%, respectively) which nonetheless remain satisfactory.The meniscal tears characterization seemed to be better interpreted using MR-arthrography. As far as the chondral lesions in this series, they were predominantly located on the patellar surface and in the medial femorotibial compartment. For diagnosing the latter, the MRI/arthroscopy agreement was good (K=0.70) but not as good as the MR-arthrography/arthroscopy agreement (K=0.805) which can be rated excellent. The detection sensitivity thus increased by 10% with gadolinium intra-articular injection. However, assessment accuracy of the lesions depth was mediocre, with frequent errors for the intermediary stages.DiscussionIntra-articular gadolinium injection improved MRI performances for numerous reasons: filling the joint, reinforcing the synovial fluid signal, and enhancing anatomic structures contrast on the T1-weighted sequences images. In this study, MR-arthrography appeared to be superior to conventional MRI in meniscal and cartilaginous lesions diagnosis, confirming the results previously obtained in other countries. In light of these results and other data from the literature, MR-arthrography can be indicated as an alternative to CT-arthrography in various clinical situations: detection of recurrent tears on operated menisci, search for cartilaginous lesions or foreign bodies in the joint space, and preoperative assessment before chondral repair procedures. However, conventional MRI remains the reference examination for studying cartilage, because the low resolution of MR-arthrography limits its performances in quantitative assessment of lesions depth.Level of evidence: Level III. Non randomized comparative prospective study

    Self-consumption of electricity from renewable sources

    Get PDF
    If the cost of energy production from renewable energy sources (RES) reduces below the level of electricity retail prices, self-consumption (SC) can contribute to market integration of RES. Support schemes such as feed-in tariffs could be phased out in view of parity of retail prices and RES production costs. In combination with electricity storage and demand response (DR), SC can facilitate the integration of variable renewables onto the grid and lower the overall costs of the energy system through load shifting particularly if storage and DR is managed using ICT and algorithms controlling charging cycles and usage of electric devices. Some issues remain however: Self-consumption potential is limited without further technical enhancements in storage or DR solutions. To organize self-consumption efficiently, measures on the grid side and energy storage have to be taken. Enabling the grid to provide necessary information back to prosumers and vice versa, as well as developing economic ways of storing energy is key to unleashing the potential that lies within the transition from passive consumers to active prosumers. Different policies, such as the support of investments to storage installations, can foster those developments. The impact of electricity retail prices has to be considered also. Self-consumption is profitable if the costs of locally produced RES are lower than the retail electricity price. There are, however, worries that a high penetration of self-consumption solutions might lead to an unfair distribution of network charges, taxes and levies even if storage and DR measures can lower additional costs arising from PV integration. Future energy policy can address the way how costs get allocated

    Phenotype Algorithms for the Identification and Characterization of Vaccine-Induced Thrombotic Thrombocytopenia in Real World Data: A Multinational Network Cohort Study

    Get PDF
    INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date

    Phenotype Algorithms for the Identification and Characterization of Vaccine-Induced Thrombotic Thrombocytopenia in Real World Data:A Multinational Network Cohort Study

    Get PDF
    INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40264-022-01187-y

    Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study

    Get PDF
    BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore