25 research outputs found

    A systematic survey of regional multi-taxon biodiversity:evaluating strategies and coverage

    Get PDF
    Abstract Background In light of the biodiversity crisis and our limited ability to explain variation in biodiversity, tools to quantify spatial and temporal variation in biodiversity and its underlying drivers are critically needed. Inspired by the recently published ecospace framework, we developed and tested a sampling design for environmental and biotic mapping. We selected 130 study sites (40 × 40 m) across Denmark using stratified random sampling along the major environmental gradients underlying biotic variation. Using standardized methods, we collected site species data on vascular plants, bryophytes, macrofungi, lichens, gastropods and arthropods. To evaluate sampling efficiency, we calculated regional coverage (relative to the known species number per taxonomic group), and site scale coverage (i.e., sample completeness per taxonomic group at each site). To extend taxonomic coverage to organisms that are difficult to sample by classical inventories (e.g., nematodes and non-fruiting fungi), we collected soil for metabarcoding. Finally, to assess site conditions, we mapped abiotic conditions, biotic resources and habitat continuity. Results Despite the 130 study sites only covering a minute fraction (0.0005%) of the total Danish terrestrial area, we found 1774 species of macrofungi (54% of the Danish fungal species pool), 663 vascular plant species (42%), 254 bryophyte species (41%) and 200 lichen species (19%). For arthropods, we observed 330 spider species (58%), 123 carabid beetle species (37%) and 99 hoverfly species (33%). Overall, sample coverage was remarkably high across taxonomic groups and sufficient to capture substantial spatial variation in biodiversity across Denmark. This inventory is nationally unprecedented in detail and resulted in the discovery of 143 species with no previous record for Denmark. Comparison between plant OTUs detected in soil DNA and observed plant species confirmed the usefulness of carefully curated environmental DNA-data. Correlations among species richness for taxonomic groups were predominantly positive, but did not correlate well among all taxa suggesting differential and complex biotic responses to environmental variation. Conclusions We successfully and adequately sampled a wide range of diverse taxa along key environmental gradients across Denmark using an approach that includes multi-taxon biodiversity assessment and ecospace mapping. Our approach is applicable to assessments of biodiversity in other regions and biomes where species are structured along environmental gradient

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    A three-gene phylogeny of the <em>Mycena pura complex</em> reveals 11 phylogenetic species and shows ITS to be unreliable for species identification

    No full text
    Phylogenetic analyses of Mycena sect. Calodontes using ITS previously suggested ten cryptic monophyletic ITS lineages within the Mycena pura morphospecies. Here, we compare ITS data (645 bp incl. gaps) from 46 different fruit bodies that represent the previously described ITS diversity with partial tEF-1-α (423 bp) and RNA polymerase II (RPB1) (492 bp) sequence data to test the genealogical concordance. While neither of the markers were in complete topological agreement, the branches differing between the tEF and RPB1 trees had a low bootstrap (<50) support, and the partition homogeneity incongruence length difference (ILD) tests were not significant. ILD tests revealed significant discordances between ITS and the tEF and RPB1 markers in several lineages. And our analyses suggested recombination between ITS1 and ITS2, most pronounced in one phylospecies that was identical in tEF and RPB1. Based on the agreement between tEF and RPB1, we defined 11 mutually concordant terminal clades as phylospecies inside the M. pura morphospecies; most of them cryptic. While neither of the markers showed an unequivocal barcoding gap between inter- and intraspecific diversity, the overlap was most pronounced for ITS (intraspecific diversity 0-3.5 %, interspecific diversity 0.4 %-8.8 %). A clustering analysis on tEF separated at a 1.5 % level returned all phylogenetic species as Operational Taxonomic Units (OTUs), while ITS at both a 1.5 % level and at a 3 % threshold level not only underestimated diversity as found by the tEF and RPB1, but also identified an OTU which was not a phylogenetic species. Thus, our investigation does not support the universal suitability of ITS for species recognition in particular, and emphasises the general limitation of single gene analyses combined with single percentage separation values
    corecore