12 research outputs found

    Cold spells in the Nordic Seas during the early Eocene Greenhouse

    Get PDF
    Abstract The early Eocene (c. 56 - 48 million years ago) experienced some of the highest global temperatures in Earth’s history since the Mesozoic, with no polar ice. Reports of contradictory ice-rafted erratics and cold water glendonites in the higher latitudes have been largely dismissed due to ambiguity of the significance of these purported cold-climate indicators. Here we apply clumped isotope paleothermometry to a traditionally qualitative abiotic proxy, glendonite calcite, to generate quantitative temperature estimates for northern mid-latitude bottom waters. Our data show that the glendonites of the Danish Basin formed in waters below 5 °C, at water depths of &lt;300 m. Such near-freezing temperatures have not previously been reconstructed from proxy data for anywhere on the early Eocene Earth, and these data therefore suggest that regionalised cool episodes punctuated the background warmth of the early Eocene, likely linked to eruptive phases of the North Atlantic Igneous Province.</jats:p

    Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications

    No full text
    Chloranthaceae were one of the first common lines during the early radiation of angiosperms, possibly reflecting adaptation to more open habitats. Phylogenetic analyses clarify the position of Cretaceous mesofossils in molecular trees of Recent taxa. Plants that produced Asteropollis pollen, with tepals adnate to a single carpel, are nested in crown group Chloranthaceae with Hedyosmum; Canrightiopsis, with three stamens and no perianth, is sister to Sarcandra and Chloranthus; and Canrightia is a stem relative that illustrates a still bisexual stage in floral reduction. Plants that produced Pennipollis pollen are related to Chloranthaceae and/or Ceratophyllum rather than monocots. Appomattoxia, which produced Tucanopollis pollen, has equivocal affinities, but Pseudoasterophyllites, with similar pollen and stems with reduced leaves, may be a link between Chloranthaceae and Ceratophyllum. These results imply that flowers became unisexual before losing the perianth, while bisexual flowers in Canrightiopsis, Sarcandra, and Chloranthus are secondarily derived from unisexual flowers
    corecore