49 research outputs found

    Spotting effect in microarray experiments

    Get PDF
    BACKGROUND: Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array. RESULTS: Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. CONCLUSIONS: The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis

    Breeding Tomato Hybrids for Flavour: Comparison of GWAS Results Obtained on Lines and F1 Hybrids

    Get PDF
    [EN] Tomato flavour is an important goal for breeders. Volatile organic compounds (VOCs) are major determinants of tomato flavour. Although most tomato varieties for fresh market are F1 hybrids, most studies on the genetic control of flavour-related traits are performed on lines. We quantified 46 VOCs in a panel of 121 small fruited lines and in a test cross panel of 165 hybrids (the previous panel plus 44 elite cherry tomato lines crossed with a common line). High and consistent heritabilities were assessed for most VOCs in the two panels, and 65% of VOC contents were strongly correlated between lines and hybrids. Additivity was observed for most VOCs. We performed genome wide association studies (GWAS) on the two panels separately, along with a third GWAS on the test cross subset carrying only F1 hybrids corresponding to the line panel. We identified 205, 183 and 138 associations, respectively. We identified numerous overlapping associations for VOCs belonging to the same metabolic pathway within each panel; we focused on seven chromosome regions with clusters of associations simultaneously involved in several key VOCs for tomato aroma. The study highlighted the benefit of testcross panels to create tasty F1 hybrid varieties.This research was funded by the CIFRE project Qualhytom, grant number 2018/1239, the ANR project TomEpiSet, grant number ANR-16-CE20-0014 and European Union's Horizon 2020 research and innovation programme, HARNESSTOM, grant number No. 101000716.Bineau, E.; Rambla Nebot, JL.; Priego-Cubero, S.; Hereil, A.; Bitton, F.; Plissonneau, C.; Granell Richart, A.... (2021). Breeding Tomato Hybrids for Flavour: Comparison of GWAS Results Obtained on Lines and F1 Hybrids. Genes. 12(9):1-20. https://doi.org/10.3390/genes12091443S12012

    Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the finishing of the sequencing of the <it>Arabidopsis thaliana </it>genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models.</p> <p>Results</p> <p>The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS.</p> <p>Conclusion</p> <p>This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs.</p

    Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor

    Get PDF
    Tomato flavor has changed over the course of long-term domestication and intensive breeding. To understand the genetic control of flavor, we report the meta-analysis of genome-wide association studies (GWAS) using 775 tomato accessions and 2,316,117 SNPs from three GWAS panels. We discover 305 significant associations for the contents of sugars, acids, amino acids, and flavor-related volatiles. We demonstrate that fruit citrate and malate contents have been impacted by selection during domestication and improvement, while sugar content has undergone less stringent selection. We suggest that it may be possible to significantly increase volatiles that positively contribute to consumer preferences while reducing unpleasant volatiles, by selection of the relevant allele combinations. Our results provide genetic insights into the influence of human selection on tomato flavor and demonstrate the benefits obtained from meta-analysis.J-T.Z. was funded by a Chinese Scholarship Council (CSC) scholarship

    Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages.</p> <p>Results</p> <p>Only subtle transcriptomic differences resulting from the <it>Prnp </it>knockout could be evidenced, beside <it>Prnp </it>itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal <it>Prnp </it>disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences.</p> <p>Conclusions</p> <p>These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.</p

    Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels

    Get PDF
    Quantitative trait loci (QTL) have been identified using traditional linkage mapping and positional cloning identified several QTLs. However linkage mapping is limited to the analysis of traits differing between two lines and the impact of the genetic background on QTL effect has been underlined. Genome-wide association studies (GWAs) were proposed to circumvent these limitations. In tomato, we have shown that GWAs is possible, using the admixed nature of cherry tomato genomes that reduces the impact of population structure. Nevertheless, GWAs success might be limited due to the low decay of linkage disequilibrium, which varies along the genome in this species. Multi-parent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage and GWAs by increasing the precision of QTL mapping. We have developed a MAGIC population by crossing eight tomato lines whose genomes were resequenced. We showed the potential of the MAGIC population when coupled with whole genome sequencing to detect candidate single nucleotide polymorphisms (SNPs) underlying the QTLs. QTLs for fruit quality traits were mapped and related to the variations detected at the genome sequence and expression levels. The advantages and limitations of the three types of population, in the context of the available genome sequence and resequencing facilities, are discussed.This work was supported by CEA-IG/CNG, by performing the DNA QC and providing access to INRA-EPGV to their Illumina Sequencing Platform. We acknowledge groups of Anne Boland (DNA and Cell Bank service) and Marie-Thérèse Bihoreau (Illumina HT Sequencing). The ANR MAGIC-Tom SNP project 09-GENM-109G and the European Solanaceae Integrated Project EUSOL (Food-CT-2006-016214) supported this work. LP was supported by a postdoctoral INRA fellowship, EA by an INRA PhD fellowship and JD by a grant from the Embassy of France in Thailand in Junior Research Fellowship Program 2014.Peer reviewe

    Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for <it>Quercus robur</it>, its characterization and an analysis of BAC end sequences.</p> <p>Results</p> <p>The <it>Eco</it>RI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while <it>ab initio </it>repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of <it>Arabidopsis thaliana</it>, <it>Vitis vinifera </it>and <it>Populus trichocarpa</it>. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of <it>V. vinifera.</it></p> <p>Conclusions</p> <p>This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak.</p
    corecore