17 research outputs found

    Long-term and large-scale hydrodynamical simulations of migrating planets

    Get PDF
    We present a new method that allows long-term and large-scale hydrodynamical simulations of migrating planets over a grid-based Eulerian code. This technique, which consists in a remapping of the disk by tracking the planetary migration, enables runs of migrating planets over a time comparable to the age of protoplanetary disks. This method also has the potential to address efficiently problems related with migration of multi-planet systems in gaseous disks, and to improve current results of migration of massive planets by including global viscous evolution as well as detailed studies of the co-orbital region during migration. We perform different tests using the public code FARGO3D to validate this method and compare its results with those obtained using a classical fixed grid.Comment: Accepted for publication in ApJ. For a movie describing the method, see https://youtu.be/66o0Z2lX8N

    Gas dynamics in tidal dwarf galaxies : disc formation at z=0

    Get PDF
    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting/merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can form only from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona-fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291 we analyse existing HI data from the Very Large Array (VLA), while for NGC 7252 we present new HI observations from the Jansky VLA together with long-slit and integral-field optical spectroscopy. For all six TDGs, the HI emission can be described by rotating disc models. These HI discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND.Peer reviewe

    Eccentricity driving of pebble accreting low-mass planets

    Full text link
    By means of high-resolution hydrodynamical, three-dimensional calculations with nested-meshes, we evaluate the eccentricity reached by a low-mass, luminous planet embedded in an inviscid disc with constant thermal diffusivity and subjected to thermal forces. We find that a cell size of at most 1/10th of the size of the region heated by the planet is required to get converged results. When the planet’s luminosity is supercritical, we find that it reaches an eccentricity of the order of 10−2–10−1, which increases with the luminosity and broadly scales with the disc’s aspect ratio. Restricting our study to the case of pebble accretion, we incorporate to our model the dependence of the accretion rate of pebbles on the eccentricity. There is therefore a feedback between eccentricity, which determines the accretion rate and hence the planet’s luminosity, and the luminosity, which yields the eccentricity attained through thermal forces. We solve for the steady-state eccentricity and study how this quantity depends on the disc’s turbulence strength parameter αz, on the dimensionless stopping time of the pebbles τs, on the inward mass flux of pebbles and on the headwind (the difference between the gas velocity and the Keplerian velocity). We find that, in general, low-mass planets (up to a few Earth masses) reach eccentricities comparable to the disc’s aspect ratio, or a sizeable fraction of the latter. Eccentric, low-mass protoplanets should therefore be the norm rather than the exception, even if they orbit far from other planets or from large-scale disturbances in the disc
    corecore