941 research outputs found

    Multi-Objective Design Optimization of the Leg Mechanism for a Piping Inspection Robot

    Get PDF
    This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.Comment: Proceedings of the ASME 2014 International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Buffalo : United States (2014

    Spike-Timing Dependent Plasticity and Regime Transitions in Random Recurrent Neural Networks

    No full text
    ISBN : 978-2-9532965-0-1In this paper, we investigate how Spike-Timing Dependent Plasticity, when applied to a random recurrent neural network of leaky integrate-and-fire neurons, can affect its dynamical regime. We show that in an autonomous network with self-sustained activity, STDP has a regularization effect and simplifies the dynamics. We then look at two different ways to present stimuli to the network: potential-based input and current-based input. We show that in the first case STDP can lead to either synchronous or asynchronous periodical activity, depending on the network's internal parameters. However, in the latter case, synchronization can only appear when the input is presented to a fraction of the neurons instead of the whole

    Phase-change materials to improve solar panel's performance

    Get PDF
    International audienceHigh operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels. This paper investigates the use of phase-change materials (PCM) to maintain the temperature of the panels close to ambient. The main focus of the study is the computational fluid dynamics (CFD) modeling of heat and mass transfers in a system composed of an impure phase change material situated in the back of a solar panel (SP). A variation of the enthalpy method allows simulating the thermo-physical change of the material properties. The buoyancy term in Navier-Stokes' momentum conservation equation is modified through an additional term which forces the velocity field to be non-existent when the PCM is solid. For validation purposes, isotherms and velocity fields are calculated and compared to those from an experimental set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel's operating temperature under 40 °C for 80 minutes under a constant solar radiation of 1000 W/m2

    Revisiting the reduction of indoles by hydroboranes: A combined experimental and computational study

    Get PDF
    A combined experimental and density functional computational study was used to probe the mechanism for the reduction of indoles using simple borane BH3·DMS (DMS = dimethyl sulfide). Experimental and computational studies all steer to the formation of the reduced species 1-BH2-indolines as the resting state for this reaction, as opposed to the historically presumed formation of the unreduced 1-BH2-indoles, before the addition of a proton source to form the final product indolines. Furthermore, it was observed that molecular H2 was generated and consumed in the reaction. Computations put forward hydroboration followed by protodeborylation as the very reasonable mechanistic route for the formation of experimentally observed major intermediate 1-BH2 indolines. For the H2 consumption in the reaction, computations suggest the frustrated Lewis pair-type heterolytic splitting of H2 by a bis(3-indolinyl)borane intermediate

    Spin-wave analysis of the transverse-field Ising model on the checkerboard lattice

    Full text link
    The ground state properties of the S=1/2 transverse-field Ising model on the checkerboard lattice are studied using linear spin wave theory. We consider the general case of different couplings between nearest neighbors (J1) and next-to-nearest neighbors (J2). In zero field the system displays a large degeneracy of the ground state, which is exponential in the system size (for J1=J2) or in the system's linear dimensions (for J2>J1). Quantum fluctuations induced by a transverse field are found to be unable to lift this degeneracy in favor of a classically ordered state at the harmonic level. This remarkable fact suggests that a quantum-disordered ground state can be instead promoted when non-linear fluctuations are accounted for, in agreement with existing results for the isotropic case J1=J2. Moreover spin-wave theory shows sizable regions of instability which are further candidates for quantum-disordered behavior.Comment: 12 pages, 13 figure

    Water adsorption by a sensitive calibrated gold plasmonic nanosensor

    Get PDF
    International audienceWe demonstrate in this work that using nanoplasmonic sensing it is possible to follow the adsorption/desorption of water molecules on gold nanodisks nanofabricated by electron beam lithography. This quantitative method is highly sensitive allowing the detection of a few hundredths of adsorbed monolayer. Disk parameters (height, diameter, inter-disk distance) have been optimized after finite-difference time-domain (FDTD) simulations in order to obtain the best localized surface plasmon resonance (LSPR) signal-to-noise ratio. Finally, we have precisely measured the adsorption kinetics of water on gold as a function of the relative humidity of the surrounding medium

    Seismicity triggered by fluid injection–induced aseismic slip

    Get PDF
    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (µm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 µm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law µ = 0.67 + 0.045ln (v/v_0) with v_0 = 0.1 µm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep

    Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography

    Get PDF
    Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 ^(40)Ar/^(39)Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out-of-sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out-of-sequence thrusting implies an unrealistic convergence rate ≥30 mm yr^(−1). The out-of-sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of <1 mm yr^(−1). In the duplex model, the 20 mm yr^(−1) convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr^(−1) and an underthrusting rate of 14.2 ± 1.8 mm yr^(−1). Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr^(−1) in the Lesser Himalaya to 3.0 ± 0.9 mm yr^(−1) at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 µWm^(−3). The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr^(−1). We also run 3-D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well
    corecore