1,011 research outputs found

    Saxion Emission from SN1987A

    Get PDF
    We study the possibility of emission of the saxion, a superpartner of the axion, from SN1987A. The fact that the observed neutrino pulse from SN1987A is in excellent agreement with the current theory of supernovae places a strong bound on the energy loss into any non-standard model channel, therefore enabling bounds to be placed on the decay constant, f_a, of a light saxion. The low-energy coupling of the saxion, which couples at high energies to the QCD gauge field strength, is expected to be enhanced from QCD scaling, making it interesting to investigate if the saxion could place stronger bounds on f_a than the axion itself. Moreover, since the properties of the saxion are determined by f_a, a constraint on this parameter can be translated into a constraint on the supersymmetry breaking scale. We find that the bound on f_a from saxion emission is comparable with the one derived from axion emission due to a cancellation of leading-order terms in the soft-radiation expansion.Comment: 18 pages, 2 figures; minor changes, typos corrected, version to appear in JHE

    PMS70 Tumor Necrosis Factor (TNF)-Blocker Dose Escalation among Patients with Rheumatoid Arthritis (RA) in a Large Managed Care Population in the United States

    Get PDF

    Flexibly accounting for exposure misclassification with external validation data

    Get PDF
    Measurement error is common in epidemiology, but few studies use quantitative methods to account for bias due to mismeasurement. One potential barrier is that some intuitive approaches that readily combine with methods to account for other sources of bias, like multiple imputation for measurement error (MIME), rely on internal validation data, which are rarely available. Here, we present a reparameterized imputation approach for measurement error (RIME) that can be used with internal or external validation data. We illustrate the advantages of RIME over a naive approach that ignores measurement error and MIME using a hypothetical example and a series of simulation experiments. In both the example and simulations, we combine MIME and RIME with inverse probability weighting to account for confounding when estimating hazard ratios and counterfactual risk functions. MIME and RIME performed similarly when rich external validation data were available and the prevalence of exposure did not vary between the main study and the validation data. However, RIME outperformed MIME when validation data included only true and mismeasured versions of the exposure or when exposure prevalence differed between the data sources. RIME allows investigators to leverage external validation data to account for measurement error in a wide range of scenarios

    The effect of distraction, response mode and age on peripheral target detection to inform studies of lighting for driving

    Get PDF
    It is expected that the detection of peripheral objects, a key visual task for safe driving, is affected by cognitive distraction, by observer age and by the manner in which action is undertaken following detection. An experiment was conducted to measure these effects, using a fixation cross and peripheral target discs displayed on a screen. The experiment was repeated with young (18–25 years) and old (60+years) age groups, with six distraction tasks, and with simple and choice response modes. The older group was found to respond more slowly than the younger group and detected fewer targets. The results suggest that distraction impairs detection, with the degree of impairment depending on the difficulty of the distraction task. Participants were generally slower at responding with choice response but this did not lead to a greater number of missed targets. Where lighting standards are informed by the ability to detect peripheral hazards, the research should represent older people, choice responses and impaired detection due to distraction

    The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics

    Get PDF
    Chapter 10 The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics Tony J. Prescott, Ben Mitchinson, Nathan F. Lepora, Stuart P. Wilson, Sean R. Anderson, John Porrill, Paul Dean, Charles ..

    Impact of predicted precipitation scenarios on multitrophic interactions

    Get PDF
    1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios

    One million years of climate-driven rock uplift rate variation on the Wasatch Fault revealed by fluvial topography

    Get PDF
    Displacement along the Wasatch Fault, Utah, has created the Wasatch Range. Owing to its topographic prominence, location on the eastern boundary of the Basin and Range, presently active fault slip, and proximity to Utah’s largest cities, the range and fault have garnered much attention. On the 102–103 year timescale, the behavior, displacement and seismic history of the Wasatch Fault has been well categorized in order to assess seismic hazard. On the 107 year timescale, the rock uplift rate history of the Wasatch range has also been resolved using thermochronometric data, owing to its importance in inferring the history of extension in the western US. However, little data exists that bridges the gap between these two timescales. Here, we infer an approximately 1 Ma rock uplift rate history from analysis of three river networks located in the center of the range. Our recovered rock uplift rate histories evidence periodic changes to rock uplift on the Wasatch Fault, that coincide with climate driven filling and unfilling of lakes in the Bonnneville Basin. To ensure our rock uplift rate histories are robust, we use field data and previously published cosmogenic 10Be erosion rate data to tightly constrain the erodibility parameter, and investigate an appropriate value for the slope exponent of the stream power model, n. We use our river network inversion to reconcile estimates of erodibility from a number of methodologies and show that the contrast between bedrock and bedload strength is an important factor that determines erodibility

    Scaling anomaly in cosmic string background

    Full text link
    We show that the classical scale symmetry of a particle moving in cosmic string background is broken upon inequivalent quantization of the classical system, leading to anomaly. The consequence of this anomaly is the formation of single bound state in the coupling interval \gamma\in(-1,1). The inequivalent quantization is characterized by a 1-parameter family of self-adjoint extension parameter \omega. It has been conjectured that the formation of loosely bound state in cosmic string background may lead to the so called anomalous scattering cross section for the particles, which is usually seen in molecular physics.Comment: 4 pages,1 figur

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • …
    corecore