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Measurement error is common in epidemiology, but few studies use quantitative methods to account for
bias due to mismeasurement. One potential barrier is that some intuitive approaches that readily combine with
methods to account for other sources of bias, like multiple imputation for measurement error (MIME), rely on
internal validation data, which are rarely available. Here, we present a reparameterized imputation approach for
measurement error (RIME) that can be used with internal or external validation data. We illustrate the advantages
of RIME over a naive approach that ignores measurement error and MIME using a hypothetical example and a
series of simulation experiments. In both the example and simulations, we combine MIME and RIME with inverse
probability weighting to account for confounding when estimating hazard ratios and counterfactual risk functions.
MIME and RIME performed similarly when rich external validation data were available and the prevalence of
exposure did not vary between the main study and the validation data. However, RIME outperformed MIME
when validation data included only true and mismeasured versions of the exposure or when exposure prevalence
differed between the data sources. RIME allows investigators to leverage external validation data to account for
measurement error in a wide range of scenarios.

causality; survival analysis; systematic bias

Abbreviations: ESRD, end-stage renal disease; CI, confidence interval; GFR, glomerular filtration rate; MIME, multiple imputation
for measurement error; RIME, reparameterized imputation for measurement error.

Exposure measurement error is an important and com-
mon threat to the validity of epidemiologic studies. Mul-
tiple imputation for measurement error (MIME) is a valid
approach to account for exposure measurement error in some
settings and is appealing because it can be used in concert
with almost any approach for data analysis, including set-
tings with measured confounding and informative censoring
(1, 2). Moreover, MIME draws on methods for handling
missing data that are familiar to many epidemiologists (3, 4).
However, existing work describing multiple imputation to
account for exposure measurement error is limited to settings
with internal validation data.

Although the use of internal validation data is generally
preferred to external validation data when correcting for
measurement error, using internal validation data is often

infeasible given the logistics and cost associated with col-
lecting this information. Moreover, secondary data analysis
or analysis of data others have collected might not allow
opportunities for internal validation studies.

MIME relies on internal validation data because it mod-
els the predictive values directly. In 2006, Cole, Chu, and
Greenland (1) noted that one could reparameterize MIME
by modeling sensitivity and specificity rather than the pre-
dictive values. Here, we show that this reparameterization
enables the use of imputation approaches to account for
exposure measurement error in settings without internal
validation data but with some knowledge of the misclas-
sification probabilities (from an external validation study
or prior knowledge). The proposed approach, which we
refer to as “reparameterized imputation for measurement



error” (RIME), relaxes the strict assumption that the positive
and negative predictive values are transportable between
the main study and the validation sample and instead relies
only on transportability of sensitivity and specificity. When
an internal validation study is conducted among a random
sample of main study participants, we expect MIME and
RIME to yield equivalent results. However, in settings with
only external validation data or a biased internal validation
sample, we expect RIME to outperform MIME.

We illustrate use of the new, reparameterized imputation
for measurement error correction using the same hypothet-
ical study of the effect of low glomerular filtration rate
on end-stage renal disease (ESRD) used by Cole, Chu,
and Greenland (1), and we explore finite sample proper-
ties of the proposed approach using a series of simulation
experiments.

METHODS

Hypothetical cohort

We first illustrate the proposed reparameterized impu-
tation approach using the hypothetical study population
described by Cole, Chu, and Greenland (1), with slight
modification. Briefly, the data set contains records for 600
children between the ages of 1 and 16 years with chronic
kidney disease, and the parameter of interest is the effect on
ESRD of low glomerular filtration rate (GFR) at study entry
relative to moderate GFR. We present both the hazard ratio
for the effect of low GFR and the risk difference comparing
risk of ESRD at 3 years between the groups. We extend
the data set described by Cole, Chu, and Greenland (1) to
include binary confounder L, which affects both GFR and
ESRD. Let participants be indexed by i; Ti represents the
time from study entry until ESRD, Xi represents true GFR
level (low vs. moderate), and Wi represents measured GFR

e(

Analysis of the hypothetical cohort

We estimated standardized hazard ratios and risk dif-
ferences for the effect of GFR on ESRD accounting for
confounding by L in the hypothetical cohort using 3 analy-
tical approaches to account for exposure misclassification: a
naive approach, the traditional multiple imputation approach
to account for measurement error (MIME), and the proposed
approach (RIME). Each of these approaches was compared
with the “full data” approach, which used data on the true,
but usually unobserved, exposure X.

Full data

The first parameter of interest was the hazard ratio for
the effect of GFR on ESRD corresponding to exp
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and the inverse probability of exposure weights were πi,x =
P(X =x)/P(X =x|Li). We used the robust variance estimator
(5, 6) to construct Wald-type 95% confidence intervals.

The second parameter of interest was the risk difference
under low versus moderate GFR at 3 years after study entry.
We defined risk under each GFR level as FTx(t) = P(Tx ≤ t)
(7). In the full data, we estimated the risk under each expo-
sure as the complement of the weighted Kaplan-Meier (8)
estimate of the survival function at 3 years. Specifically,
the risk function for exposure group X = x was estimated
as F̂Tx(t) = 1 − ∏

tj≤t

{
1 − dπ

tj,x/nπ
tj,x

}
, where dπ

tj,x and
nπ

tj,x were the weighted number of events and number in
the risk set at event time tj for participants with X = x,
respectively. Confidence intervals around the risk difference
were constructed as plus or minus 1.96 times the standard
error, where the standard error was estimated as the standard
deviation of the risk difference in 1,000 bootstrap samples of
the main study data.

Standard approach

Because, in real-world scenarios, the true exposure is
unobserved, the “standard approach” estimated the param-
eters of interest using the possibly mismeasured exposure
W in place of X. Specifically, we estimated the hazard
ratio as exp(α̂′), where α̂′ was estimated by maximizing the
weighted partial likelihood:
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individual had the event prior to Ci. The index i will be 
suppressed where possible below for clarity. Assume that 
Y , δ, and  L are measured without error in the hypothetical 
data. Although the data set contains both the true GFR status 
X and the possibly mismeasured GFR status W, we assume 
that only W is observed in the main study data.

Finally, we generated 2 separate external validation data 
sets composed of 150 records not included in the main 
study. The first external validation data set included only 
information on measured GFR W and gold-standard GFR 
measurement X. The second validation data set included 
information on outcomes Y and δ and covariate L in addition 
to W and X. In both validation data sets, the prevalence of 
true exposure X was the same as in the main study, although 
we later explore a set of scenarios in simulations in which the 
prevalence of X in external validation data set 2 ranged from 
25% to 90%. Details of the data-generating mechanisms for 
both hypothetical data sets and the external validation data 
set are available in Web Appendix 1 (available at https://
academic.oup.com/aje).

https://academic.oup.com/aje


and the inverse probability of exposure weights were πi,w =
P(W = w)/P(W = w|Li). We estimated the risk difference
as the difference in the weighted complement of the Kaplan-
Meier survival functions at 3 years in which the curves
were stratified and weighted based on W rather than X (i.e.,
F̂′

Tx(t) = 1−∏
tj≤t

{
1−dπw

tj,w/nπw
tj,w

}
where dπw

tj,w and nπw
tj,w were

the weighted number of events and number in the risk set
at event time tj for participants with W = w, respectively).
As in the full data, we used the robust variance estimator to
construct a 95% confidence interval around the naive hazard
ratio and the nonparametric bootstrap to obtain confidence
intervals around the risk differences.

Multiple imputation for measurement error

The traditional MIME approach was based on modeling
the predictive values in the validation sample as described by
Cole, Chu, and Greenland (1) and elsewhere (as in Edwards
et al. (9)). We implemented MIME to account for exposure
measurement error in the hazard ratio and risk difference,
first using external validation data set 1 and then using
external validation data set 2. Briefly, this approach required:
1) fitting an imputation model for the exposure in the vali-
dation data set to obtain estimates of the “predictive values,”
or the probability that each participant in the validation data
set was truly exposed given available variables; 2) imputing
the true exposure k times for participants in the main
study data using the predictive values; 3) conducting the
analyses in each imputed data set; and 4) combining results
across imputations using standard multiple imputation
techniques (10). Confidence intervals around hazard ratios
were constructed using Rubin’s Rules (10), which combine
within-imputation variability (conveyed by the robust
standard error estimated in each imputation) and between-
imputation variability, while confidence intervals around
risk differences were constructed using the nonparametric
bootstrap.

Literature on MIME suggests including outcomes and
covariates used in the weights in the imputation model. How-
ever, when using external validation data, these variables are
frequently unavailable. Accordingly, we first implemented
MIME using only the information contained in external
validation data set 1, which included measurements on X
and W only. Using external data set 1, we predicted the
probability of X in the validation data conditional on W using
logistic regression: P(X = 1|W) = expit{β0 + β1W}. We
used information on β̂0 and β̂1 and values of W in the main
study to impute Xk for all participants in the main study for
each of K imputations, indexed by k.

We next implemented MIME using external validation
data set 2, which included information on outcomes and
covariates in addition to X and W. When using external
validation data set 2, we fit the imputation model P(X =
1|W, Y , δ, L) = expit{β0 + β1W + β2 log(Y) + β3δ + β4L}
and used estimated values of β1 through β4 along with values
of {W, Y , δ, L} in the main study to impute Xk.

Analyses (e.g., weighted Cox models and estimation of
risk functions) were implemented in each imputed data set
and resultswere combined across imputations using standard

multiple imputation techniques. Details about implementa-
tion of the MIME approach are provided in Web Appendix 2.

Reparameterized imputation for measurement error

Like MIME, the proposed reparameterized imputation
approach (RIME) relied on accurately estimating the
“predictive values,” or the probability that each participant
was exposed, given his or her observed exposure and
outcome. Let ωi represent the predictive value ωi = P(X =
1|Wi, δi, log{Yi}, Li). Unlike MIME, RIME did not estimate
the predictive values directly from the validation sample;
instead, we used the external validation data set to estimate
sensitivity (se = P(W = 1|X = 1)) and specificity
(sp = P(W = 0|X = 0)). To estimate the predictive values
in the main study, we applied Bayes’ theorem:

if Wi = 1, ωi = (se × μi)/[se × μi + (1 − sp) × (1 − μi)]

if Wi = 0, ωi = [(1−se)×μi]/[(1−se)×μi+sp×(1−μi)],

where μi = P(X = 1|δi, log{Yi}, Li). μi was a nuisance
parameter; it was not of central interest but required to obtain
correct estimates of ωi. We specified a logistic model for
logit(μi) = logit[P(X = 1|δi, log{Yi}, Li)] = γ0 + γ1δ +
γ2 log{Yi} + γ3δi log{Yi} + γ4Li. However, because true
exposure X was unobserved, we estimated the parameters
γ using a modified likelihood function written in terms of
measured exposure Wi, sensitivity, and specificity (11):

L (γ) =
∏N

i=1

{
μi × se + (1 − μi) × (1 − sp)

}wi

{(
1 − μi

) × sp + μi × (
1 − se

)}(1−wi)

.

With the estimated predictive values ω in hand, we could
have used multiple imputation to impute the exposure value
in each of several imputations and combine results across
imputations. However, here, we chose to use parametric
fractional imputation (12) in which we made 2 copies of the
observed data, indexing each copy by j and setting a stand-in
for the true exposure X∗

i1 = 1 in the first copy and X∗
i0 = 0

in the second copy. In the expanded data set, copies of
participants were weighted by the misclassification weight
or “m-weight.” In the first copy, participants are weighted
by ωi and in the second copy, participants are weighted
by 1 − ωi. We estimated inverse probability of exposure
weights in the expanded and m-weighted data set as πij,x∗ =
P(X∗

ij = x)/P(X∗
ij = x|Li). Final weights were the product

of the inverse probability of exposure weights and the m-
weights: ηij = X∗

ijωiπij,x∗ + (1−X∗
ij)(1−ωi)πij,x∗ . Analyses

(e.g., weighted Cox models and estimation of risk functions)
were implemented in this expanded data set weighted by ηij.
Details are provided in Web Appendix 3.

Confidence intervals for the hazard ratios and risk dif-
ferences estimated using RIME were constructed as the
point estimate (i.e., risk difference or log(hazard ratio)) plus
or minus 1.96 times the standard deviation of the point
estimate from 1,000 bootstrap samples of the main study and



Table 1. Example Data for 600 Children With Chronic Kidney Disease

True GFR Status Overall

Moderate:
X = 0

(n = 359)

Low:
X = 1

(n = 241)
(n = 600)Characteristic

No. % No. % No. %

Measured GFR status

W = 0 251 69.9 23 9.5 274 45.7

W = 1 108 30.1 218 90.5 326 54.3

Confounder

L = 0 120 33.4 177 73.4 300 50.0

L = 1 239 66.6 61 25.3 300 50.0

Events 70 19.5 64 26.6 134 22.3

Total no. of person-years 997 650 1,647

Abbreviations: GFR, glomerular filtration rate; L, binary confounder; W, study measurement of GFR status; X,
gold-standard measurement of GFR status.

validation data. Specifically, in each bootstrap iteration q,
sensitivity ŝeq and specificity ŝpq were estimated from the
resampled external validation data, the modified likelihood
function was fit in the resampled main study data to estimate
μ̂q, and μ̂q was combined with estimated ŝeq and ŝpq to
estimate ω̂i,q and determine the misclassification weights for
that iteration.

R (R Foundation for Statistical Computing, Vienna, Aus-
tria) code to implement RIME to obtain hazard ratios in the
example data is provided in Web Appendix 4.

Simulations

To examine the finite sample properties of the proposed
approach, we repeated the hypothetical study described
above 1,000 times and summarized the results under several
values of sensitivity and specificity and under various sizes
of the external validation data set. We compared the perfor-
mance of the naive approach, MIME, and RIME to estimate
both hazard ratios and risk differences, where MIME and
RIME were implemented using external validation data set

1 or external validation data set 2. Specifically, we com-
pared bias, standard error, root mean squared error, and
95% confidence interval coverage probabilities among the
3 approaches. When estimating the hazard ratio, bias was
defined as the difference between the true log hazard ratio
and the estimated log hazard ratio. When estimating the risk
difference, bias was defined as 100 times the difference
between the true risk difference and the estimated risk
difference. Standard errors were computed as the average
estimated standard error for the log hazard ratio or risk
difference over all trials. Root mean squared error was the
square root of the sum of the squared bias and the variance.
Finally, 95% coverage probability was the proportion of
simulated studies in which the 95% confidence interval
contained the true parameter value.

Next, we examined the robustness of MIME and RIME to
the prevalence of exposure in the external validation sample.
In the scenario in which sensitivity was 0.9 and specificity
was 0.7 using external validation data set 2, we compared
the naive approach, MIME, and RIME under varying
prevalence of true exposure in the validation data set.

Table 2. Example Validation Data Set 1a to Validate Glomerular Filtration Rate Status Among Children With
Chronic Kidney Disease

X = 0 X = 1

W = 0 62 5

W = 1 27 56

Abbreviations: GFR, glomerular filtration rate; W,study measurement of GFR status; X, gold-standard measure-
ment of GFR status.

a Contains records for 150 participants not included in the main study. Contains information on W and X only for
all participants. Overall prevalence of X is about the same as in the main study.



Table 3. Example Validation Data Set 2a to Validate Glomerular Filtration Rate Status Among Children With
Chronic Kidney Disease

X = 0 X = 1

W = 0 62 5

W = 1 27 56

L = 0 30 45

L = 1 59 16

No. of events 29 18

No. of person-years 232 163

Abbreviations: GFR, glomerular filtration rate; L, binary confounder; W, study measurement of GFR status; X,
gold-standard measurement of GFR status.

a Contains records for 150 participants not included in the main study. Contains information on W, X, L events
and person-years for all participants. Overall prevalence of X is about the same as in the main study.

As in the hypothetical studies and simulations described
above, the true, but unobserved, exposure prevalence in
the main study was 40%. We varied the prevalence of the
true exposure in the validation study from 25% to 90% in
increments of 5% and calculated the bias for each approach
under each scenario.

RESULTS

Hypothetical cohort

Example data for the 600 children in a single draw of the
simulated hypothetical cohort are shown in Table 1. Approx-
imately 40% of children in the hypothetical cohort had low
GFR, and 50% had confounder L. In the hypothetical cohort,
we assumed that true GFR status X was unobserved and that

we had measured W in its place. Using the complete data
from Table 1, we estimated that the sensitivity of W as a
measure of X was 90% and its specificity was 70%. By the
end of the 3-year study period, 134 ESRD events occurred
and children contributed a total of 1,647 person years of
follow-up.

External validation data set 1 contained information on X
and W for a group of 150 participants not included in the
main study (Table 2). While the data-generating mechanism
dictated that the expected value of sensitivity and specificity
in the validation data were the same as in the main study,
in this data set, sensitivity of W as a proxy for X was
92% and specificity was 70%. External validation data set
2 was identical to external validation data set 1 except that
confounder L and outcomes Y and δ were measured in
addition to W and X (Table 3).

Table 4. Comparing Incidence of End-Stage Renal Disease Between Children With Low Glomerular Filtration Rate and Children With
Moderate Glomerular Filtration Rate From a Hypothetical Cohort Study of 600 Children

Weighted Hazard Ratios 3-Year Risk Differences

Approach
HR SE for Ln(HR) 95% CI for HR RD, % SE for RD 95% CI for RD

Full data 2.24 0.17 1.60, 3.13 17.0 3.5 10.1, 23.9

Naive approach 1.58 0.18 1.11, 2.26 8.8 3.3 2.4, 15.2

Using external validation data set 1a

MIME 1.30 0.11 1.06, 1.61 5.3 2.1 1.1, 9.5

RIME 2.19 0.32 1.17, 4.11 16.1 7.7 1.0, 31.0

Using external validation data set 2b

MIME 2.74 0.30 1.53, 4.90 21.7 6.6 8.8, 34.6

RIME 2.19 0.33 1.15, 4.15 16.1 7.9 0.7, 31.5

Abbreviations: CI, confidence interval; GFR, glomerular filtration rate; HR, hazard ratio; MIME, multiple imputation for measurement error;
RD, risk difference; RIME, reparametrized imputation for measurement error; SE, standard error.

a External validation data set 1 contains data on true and error-prone measurements of GFR among 150 children recruited from outside the
main study.

b External validation data set 2 contains data on true and error-prone measurements of GFR, binary confounder L, and outcomes among
150 children recruited from outside the main study.



Table 5. Biasa, Standard Errorb, Root Mean Squared Errorc, and 95% Confidence Interval Coveraged for 3 Approaches to Estimate the Hazard
Ratio Using External Validation Data in 1,000 Simulated Cohorts Over Variouse Scenarios

Naive MIME RIME
Sensitivity, Specificity, and nv

f

Bias SE RMSE Cover Bias SE RMSE Cover Bias SE RMSE Cover

External Validation Data Set 1

0.9, 0.9

150 −0.21 0.17 0.27 0.75 −0.34 0.14 0.37 0.29 0.00 0.26 0.26 0.94

300 −0.21 0.17 0.27 0.75 −0.35 0.13 0.37 0.26 0.00 0.25 0.25 0.95

0.9, 0.7

150 −0.38 0.17 0.42 0.38 −0.55 0.10 0.56 0.00 −0.01 0.37 0.37 0.95

300 −0.38 0.17 0.42 0.38 −0.55 0.10 0.56 0.00 −0.01 0.36 0.36 0.94

0.7, 0.9

150 −0.34 0.17 0.38 0.50 −0.52 0.11 0.53 0.01 −0.01 0.36 0.36 0.96

300 −0.34 0.17 0.38 0.50 −0.53 0.10 0.54 0.00 0.00 0.34 0.34 0.96

0.7, 0.7

150 −0.52 0.17 0.55 0.11 −0.67 0.07 0.68 0.00 −0.04 0.62 0.62 0.97

300 −0.52 0.17 0.55 0.11 −0.67 0.07 0.68 0.00 −0.02 0.60 0.60 0.97

External Validation Data Set 2

0.9, 0.9

150 −0.21 0.17 0.27 0.75 −0.02 0.27 0.27 0.96 0.00 0.26 0.26 0.94

300 −0.21 0.17 0.27 0.75 −0.01 0.20 0.20 0.96 0.00 0.25 0.25 0.95

0.9, 0.7

150 −0.38 0.17 0.42 0.38 −0.02 0.30 0.30 0.97 −0.01 0.37 0.37 0.95

300 −0.38 0.17 0.42 0.38 −0.01 0.21 0.21 0.96 −0.01 0.36 0.36 0.94

0.7, 0.9

150 −0.34 0.17 0.38 0.50 0.00 0.31 0.31 0.95 −0.01 0.36 0.36 0.96

300 −0.34 0.17 0.38 0.50 0.01 0.22 0.22 0.97 0.00 0.34 0.34 0.96

0.7, 0.7

150 −0.52 0.17 0.55 0.11 0.01 0.34 0.34 0.95 −0.04 0.62 0.62 0.97

300 −0.52 0.17 0.55 0.11 0.02 0.23 0.23 0.97 −0.02 0.59 0.59 0.96

Abbreviations: HR, hazard ratio; MIME, multiple imputation for measurement error; RIME, reparametrized imputation for measurement error;
RMSE, root mean squared error; SE, standard error.

a Bias was defined as the difference between the true ln(HR) and the estimated ln(HR).
b Standard error was defined as the average standard error over all simulated cohorts. For the RIME approaches, standard errors for the

hazard ratios were estimated as the standard deviation of the ln(HR) in 1,000 bootstrap samples of each simulated data set.
c RMSE was the square root of the bias squared plus the variance.
d 95% confidence interval coverage was the proportion of simulated data sets in which the estimated 95% confidence interval contained the

true value.
e Scenarios varying the type of validation data available, sensitivity, specificity, and the size of the validation study.
f nv represents the size of the external validation study.

external validation data set 1 to account for the exposure
misclassification, MIME produced results farther from the
full data results than the naive approach (hazard ratio = 1.30,
95% CI: 1.06, 1.61; risk difference = 5.3%, 95% CI: 1.1,
9.5), while RIME produced results near estimates from the
full-data approach (hazard ratio = 2.19, 95% CI: 1.17,
4.11; risk difference = 16.1%, 95% CI: 1.0, 31.0). When
using external validation data set 2 to account for exposure

The 3-year estimated hazard ratio for the effect of low 
versus moderate GFR, based on the true, but unobserved, 
GFR measure X (the “full data” approach), was 2.24 (95%
confidence interval (CI): 1.60, 3.13), and the risk difference 
was 17.0% (95% CI: 10.1, 23.9) (Table 4). When W was 
used in place of X in the “standard” approach, the estimated 
hazard ratio was 1.58 (95% CI: 1.11, 2.26) and the estimated 
risk difference was 8.8% (95% CI: 2.4, 15.2). When using



Table 6. Biasa, Standard Errorb, Root Mean Squared Errorc, and 95% Confidence Interval Coveraged for 3 Approaches to Estimate the Risk
Difference Using External Validation Data in 1,000 Simulated Cohorts Over Variouse Scenarios

Sensitivity, Specificity, and nv
f

Naive MIME RIME

Bias SE RMSE Cover Bias SE RMSE Cover Bias SE RMSE Cover

External Validation Data Set 1

0.9, 0.9

150 −5.28 3.53 6.35 0.65 −7.97 2.99 8.51 0.24 −0.57 5.97 6.00 0.94

300 −5.28 3.53 6.35 0.64 −8.09 2.90 8.60 0.22 −0.55 5.78 5.81 0.94

0.9, 0.7

150 −9.19 3.45 9.82 0.26 −12.32 2.14 12.51 0.00 −0.75 8.43 8.46 0.92

300 −9.19 3.46 9.82 0.26 −12.39 2.07 12.56 0.00 −0.62 8.16 8.18 0.94

0.7, 0.9

150 −7.51 3.70 8.37 0.49 −11.82 2.28 12.04 0.01 −0.69 7.95 7.98 0.93

300 −7.51 3.70 8.37 0.49 −11.89 2.19 12.09 0.00 −0.63 7.72 7.74 0.95

0.7, 0.7

150 −12.27 3.49 12.76 0.05 −15.39 1.46 15.46 0.00 −1.08 12.65 12.70 0.97

300 −12.27 3.47 12.75 0.05 −15.43 1.38 15.49 0.00 −0.51 12.26 12.27 0.94

External Validation Data Set 2

0.9, 0.9

150 −5.28 3.53 6.35 0.65 −1.57 5.55 5.76 0.95 −0.57 5.96 5.98 0.94

300 −5.28 3.53 6.35 0.64 −1.28 4.33 4.52 0.94 −0.55 5.76 5.78 0.95

0.9, 0.7

150 −9.19 3.45 9.82 0.26 −1.81 6.23 6.48 0.95 −0.75 8.41 8.44 0.93

300 −9.19 3.46 9.82 0.26 −1.36 4.55 4.75 0.95 −0.62 8.14 8.16 0.94

0.7, 0.9

150 −7.51 3.70 8.37 0.49 −1.22 6.33 6.45 0.93 −0.69 7.95 7.98 0.93

300 −7.51 3.70 8.37 0.49 −0.96 4.68 4.78 0.97 −0.63 7.70 7.72 0.94

0.7, 0.7

150 −12.27 3.49 12.76 0.05 −1.20 6.78 6.88 0.94 −1.08 12.66 12.71 0.96

300 −12.27 3.47 12.75 0.05 −0.77 4.88 4.94 0.98 −0.51 12.28 12.29 0.94

Abbreviations: MIME, multiple imputation for measurement error; RIME, reparametrized imputation for measurement error; RMSE, root mean
squared error; SE, standard error.

a Bias was defined as the difference between the true risk difference and the estimated risk difference.
b Standard error was defined as the average standard error over all simulated cohorts. For all approaches, standard errors were estimated

as the standard deviation of the risk difference in 1,000 bootstrap samples of each simulated data set.
c RMSE was the square root of the bias squared plus the variance.
d 95% confidence interval coverage was the proportion of simulated data sets in which the estimated 95% confidence interval contained the

true value.
e Scenarios varying the type of validation data available, sensitivity, specificity, and the size of the validation study.
f nv represents the size of the external validation study.

misclassification, both MIME and RIME produced results
similar to each other and near the estimates from the full
data approach.

Simulations

Over 1,000 repetitions of the hypothetical study described
above, the naive approach produced biased 3-year hazard
ratios (Table 5) and risk differences (Table 6), with bias

increasing as sensitivity and specificity decreased. When ex-
ternal validation data for each simulated data set were gene-
rated using the same data-generating mechanism as external
validation data set 1, using MIME produced results with sub-
stantial bias and low coverage probability. In contrast, using
RIME in conjunction with the same validation data produced
results with little bias and appropriate confidence interval
coverage. Figure 1 illustrates that RIME produced results
with little bias in settings with sensitivity and specificity



Figure 1. Comparison of bias (panels A and B) and standard error (panels C and D) in the ln(hazard ratio) between reparameterized imputation
for measurement error (RIME) and the naive approach as sensitivity varies from 0.5 to 0.9 while specificity is fixed at 0.8 (panels A and C) and
as specificity varies from 0.5 to 0.9 while sensitivity is fixed at 0.8 (panels B and D) in 2,000 simulated data sets of size n = 600 with an external
validation data set of size nval = 150.

DISCUSSION

We have illustrated RIME to account for exposure mis-
classification in inverse-probability-weighted hazard ratios
and risk functions. Using simulations, we showed that RIME
provides estimates of the hazard ratio and risk difference
with little bias when using external validation data that
provides only information on gold-standard and possibly
mismeasured exposure. Moreover, even when rich external
validation data are available in which outcomes and other
covariates are provided, RIME outperforms MIME when
the true exposure prevalence in the validation data differs
from that in the main study, conditional on other measured
variables.

The primary advantage of RIME over MIME is that RIME
does not require transportability of the predictive values
between the validation data and the main study data. Rather,
RIME requires the weaker assumption that sensitivity and
specificity are transportable between the data sets. Trans-

ranging from 0.5 to 1.0, although precision was reduced for 
RIME compared with the naive approach, particularly when 
sensitivity or specificity was low.

When external validation data for each simulated data set 
were generated using the same data-generating mechanism 
as external validation data set 2, RIME and MIME both 
produced results with small bias and appropriate cover-
age. In this setting, RMSE was slightly smaller for MIME 
than for RIME. However, when we varied the prevalence 
of exposure in the external validation data set from 0.25 
to 0.9, we saw that MIME was sensitive to discrepan-
cies in exposure prevalence between the main study and 
external data, while RIME was robust to these differences 
(Figure 2).

In Web Tables 1 and 2, we provide an additional set of 
simulation results illustrating that RIME and MIME provide 
nearly identical results in terms of bias and precision when 
internal validation data randomly sampled from the main 
study are available.



Figure 2. Bias in the estimated inverse probability weighted
log(hazard ratio) using the standard approach, multiple imputation
for measurement error (MIME), and reparameterized imputation for
measurement error (RIME) in settings where external validation data
similar to external validation data set 2 are available, but the exposure
prevalence in the validation data differs from the exposure prevalence
in the main study (shown by vertical gray dashed line).

portability of sensitivity and specificity is often believed to
be a more reasonable assumption than transportability of
the predictive values because sensitivity and specificity are
properties of the exposure measurement process, while the
predictive values are functions of sensitivity, specificity, and
the prevalence of true exposure (Rothman et al. (13, p. 355)).

The proposed RIME approach can be seen as an adap-
tation of predictive value weighting to account for measure-
ment error. Predictive value weighting for exposure misclas-
sification (14) or outcome misclassification (15) is appealing
because it combines easily with analytical approaches to
address bias due to other sources, including confounding and
selection bias.

Because using RIME in conjunction with inverse proba-
bility weights requires multiplying the m-weight by the
inverse probability weight, this approach could result in
more extreme weight values. However, because the m-
weights sum to 1 for all of the records contributed by each
individual, their use should not alter the mean of the inverse
probability weights. Moreover, because inverse probability
weights are estimated in the expanded data weighted by
the m-weights, they are likely to be more stable than
standard inverse probability weights because all individuals
contribute to both exposed and unexposed groups with some
probability.

Like RIME, the previously described MIME approach
was straightforward to combine with inverse probability
of exposure weights to account for confounding. How-
ever, unlike RIME, MIME required rich validation data in
which outcomes and covariates were measured in addition
to the gold-standard exposure and possibly mismeasured

exposure. Moreover, MIME required the assumption that
predictive values within strata of the measured variables
were transportable. This assumption would be violated by
the presence of unmeasured predictors of exposure that
differ between main study and external data and, relatedly,
by heterogeneity in the effect of exposure on outcome
between the populations from which main study and external
data are drawn.

To improve the probability that predictive values are trans-
portable, implementations of MIME are typically limited to
settings with internal validation data randomly sampled from
the main study data. In contrast, RIME provided unbiased
results with appropriate confidence interval coverage even
in settings with validation data limited to gold-standard
and measured exposure. Moreover, RIME could be parame-
terized from aggregate reports of validation data or prior
knowledge, in which only cell counts or sensitivity and
specificity are reported, while MIME requires fitting a
model in the individual-level validation data, which might
not be publicly available in some settings. Even when
available, using internal validation data might not be the
preferred approach if selection into the validation study is
not at random (conditional on covariates).

A possible limitation, whenever imputations are based on
a parametric or semiparametric model, is a specification bias
resulting from parametric constraints that are incompatible
with the outcome, or other required, models (16–18). Here,
for both MIME and RIME, we fit logistic models for expo-
sure imputation and inverse probability of exposure weights,
and, in settings where we estimated the hazard ratio, a Cox
model for the outcome. Therefore, our estimates are suscep-
tible to bias due to incompatibility. Specifically, such bias
is likely to arise if we impose constraints on the imputation
model that are not compatible with the weight or outcome
models (19). Examples of such constraints include omission
of covariates or product terms or restrictive functional forms
on continuous variables. Indeed, one could cast the failure
of MIME to provide unbiased estimates in our simulations
as due to model incompatibility: MIME is too restrictive
because the imputation model must be fitted in the validation
data, which might not include covariates used in the weight
or outcome models. In contrast, RIME fits the imputation
model in the main study data, which naturally includes the
outcome and any covariates included in the weight model.
This issue of model compatibility ought to be more deeply,
and more widely, understood; especially in this burgeoning
era of new epidemiology (20), which often requires sets of
models, perhaps fitted in different data sources, to make
cogent scientific statements.

For simplicity, we considered only situations in which
exposure misclassification was nondifferential with respect
to the outcome in the example and simulations. However,
it is straightforward to extend both RIME and MIME
approaches to accommodate differential misclassification
if the appropriate validation data are available. To extend
RIME to handle differential misclassification, one would
need either external validation data in which the outcome
was measured or estimates of sensitivity and specificity
within strata of the outcome. At that point, subject-specific
sensitivity and specificity estimates could be used in the
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