361 research outputs found

    Nonreplicating, Cyst-Defective Type II Toxoplasma Gondii Vaccine Strains Stimulate Protective Immunity against Acute and Chronic Infection

    Get PDF
    Live attenuated vaccine strains, such as type I nonreplicating uracil auxotroph mutants, are highly effective in eliciting lifelong immunity to virulent acute infection by Toxoplasma gondii. However, it is currently unknown whether vaccine-elicited immunity can provide protection against acute infection and also prevent chronic infection. To address this problem, we developed nonreverting, nonreplicating, live attenuated uracil auxotroph vaccine strains in the type II Δku80 genetic background by targeting the deletion of the orotidine 5â€Č-monophosphate decarboxylase (OMPDC) and uridine phosphorylase (UP) genes. Deletion of OMPDC induced a severe uracil auxotrophy with loss of replication, loss of virulence in mice, and loss of the ability to develop cysts and chronic infection. Vaccination of mice using type II Δku80 Δompdc mutants stimulated a fully protective CD8+ T cell-dependent immunity that prevented acute infection by type I and type II strains of T. gondii, and this vaccination also severely reduced or prevented cyst formation after type II challenge infection. Nonreverting, nonreplicating, and non-cyst-forming Δompdc mutants provide new tools to examine protective immune responses elicited by vaccination with a live attenuated type II vaccine

    Pyrimidine Pathway-Dependent and -Independent Functions of the Toxoplasma gondii Mitochondrial Dihydroorotate Dehydrogenase

    Get PDF
    Dihydroorotate dehydrogenase (DHODH) mediates the fourth step of de novo pyrimidine biosynthesis and is a proven drug target for inducing immunosuppression in therapy of human disease as well as a rapidly emerging drug target for treatment of malaria. In Toxoplasma gondii, disruption of the first, fifth, or sixth step of de novo pyrimidine biosynthesis induced uracil aux- otrophy. However, previous attempts to generate uracil auxotrophy by genetically deleting the mitochondrion-associated DHODH of T. gondii (Tg DHODH) failed. To further address the essentiality of Tg DHODH, mutant gene alleles deficient in Tg DHODH activity were designed to ablate the enzyme activity. Replacement of the endogenous DHODH gene with catalytically deficient DHODH gene alleles induced uracil auxotrophy. Catalytically deficient Tg DHODH localized to the mitochondria, and parasites retained mitochondrial membrane potential. These results show that Tg DHODH is essential for the synthesis of pyrimidines and suggest that Tg DHODH is required for a second essential function independent of its role in pyrimidine biosynthesis

    Health Data and Financing and Delivery System Reform: Is the Glass Half Full or Half Empty?

    Get PDF
    In 2011, the Maine Health Access Foundation (MeHAF) launched its Advancing Payment Reform initiative to stimulate innovative payment and delivery system reform strategies in Maine. This policy paper reports on the health data experience of the 14 program grantees, using interviews conducted in 2013-14 and other information garnered from the evaluation of the initiative. The paper focuses on the role and impact of health data in supporting implementation and monitoring of specific components of the projects’ reform strategies; the data infrastructure challenges the projects have faced and how those have been addressed; and the generalizable lessons learned so far for improving data usefulness, access, analysis, and integration to support payment and delivery system reform. Support for this policy paper was provided by the Maine Health Access Foundation

    Monitoring advances including consent: learning from COVID-19 trials and other trials running in UKCRC registered clinical trials units during the pandemic.

    Get PDF
    The COVID-19 pandemic has affected how clinical trials are managed, both within existing portfolios and for the rapidly developed COVID-19 trials. Sponsors or delegated organisations responsible for monitoring trials have needed to consider and implement alternative ways of working due to the national infection risk necessitating restricted movement of staff and public, reduced clinical staff resource as research staff moved to clinical areas, and amended working arrangements for sponsor and sponsor delegates as staff moved to working from home.Organisations have often worked in isolation to fast track mitigations required for the conduct of clinical trials during the pandemic; this paper describes many of the learnings from a group of monitoring leads based in United Kingdom Clinical Research Collaboration (UKCRC) Clinical Trials Unit (CTUs) within the UK.The UKCRC Monitoring Task and Finish Group, comprising monitoring leads from 9 CTUs, met repeatedly to identify how COVID-19 had affected clinical trial monitoring. Informed consent is included as a specific issue within this paper, as review of completed consent documentation is often required within trial monitoring plans (TMPs). Monitoring is defined as involving on-site monitoring, central monitoring or/and remote monitoring.Monitoring, required to protect the safety of the patients and the integrity of the trial and ensure the protocol is followed, is often best done by a combination of central, remote and on-site monitoring. However, if on-site monitoring is not possible, workable solutions can be found using only central or central and remote monitoring. eConsent, consent by a third person, or via remote means is plausible. Minimising datasets to the critical data reduces workload for sites and CTU staff. Home working caused by COVID-19 has made electronic trial master files (TMFs) more inviting. Allowing sites to book and attend protocol training at a time convenient to them has been successful and worth pursuing for trials with many sites in the future.The arrival of COVID-19 in the UK has forced consideration of and changes to how clinical trials are conducted in relation to monitoring. Some developed practices will be useful in other pandemics and others should be incorporated into regular use

    Lead-DBS v3.0: Mapping Deep Brain Stimulation Effects to Local Anatomy and Global Networks.

    Get PDF
    Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • 

    corecore