958 research outputs found

    Stock assessment of Queensland east coast saddletail snapper (Lutjanus malabaricus), Australia

    Get PDF
    In Queensland, east coast saddletail snapper (Lutjanus malabaricus) are mostly line-caught by commercial and recreational fishers, with some recreational spearfishing take. Saddletail snapper are believed to be a single stock (population) off Queensland’s east coast. This is the first stock assessment of the Queensland east coast stock. The assessment implemented a two-sex population model fit to age and length data, constructed within the Stock Synthesis modelling framework. The model incorporated data spanning the period from financial years 1988 to 2020 including commercial logbook harvest (1988–2020), recreational, charter and Indigenous survey harvest estimates (2000–2019), length distribution data from boat-ramp surveys (2017–2020) and age-length (2018–2020). Twenty-one model scenarios were run, covering a wide range of modelling assumptions. Base case (preferred) scenario results suggested that biomass declined between 1961 and 2017 to 19% unfished biomass. In 2020, the stock level was estimated to be 23% (13–73% range across scenarios) unfished biomass. The harvest consistent with a biomass ratio of 60%, the Sustainable Fisheries Strategy longer-term target, was estimated at 159 t (146–348 t range across scenarios and all sectors). The recommended harvest in the 2021 financial year is 12 t (0–494 t range across scenarios) to achieve this target by 2040

    Stock assessment of Australian east coast Spanish mackerel (Scomberomorus commerson)

    Get PDF
    Spanish mackerel, Scomberomorus commerson, are large offshore pelagic fish. On the east coast of Australia, Spanish mackerel form a single genetic stock between Cape York Peninsula in north Queensland and Newcastle on the New South Wales mid-coast. This stock assessment used an annual time-step, two-sex, age-structured population model. The model incorporated data from 1911 to 2020, including estimated commercial, charter and recreational harvest for Queensland and New South Wales, Queensland commercial standardised catch rates, fish age-length frequencies, and key long-term fishery information on fishing power changes and catch rates. Eight model scenarios were run, covering a range of modelling assumptions and fixed parameters. The stock assessment estimates the spawning biomass of east coast Spanish mackerel in 2020 was between 14 and 27% of unfished levels in 1911. The base case model estimate was most likely at 17% of unfished biomass in 2019–2020. This report provides estimates of sustainable harvests for all sectors—commercial, charter and recreational across Queensland and New South Wales—and supports the harvest strategy defined in the Queensland’s Sustainable Fisheries Strategy 2017–2027 (Department of Agriculture and Fisheries 2017)

    Solar Polar Fields During Cycles 21 --- 23: Correlation with Meridional Flows

    Full text link
    We have examined polar magnetic fields for the last three solar cycles, {viz.\it{viz.}}, cycles 21, 22 and 23 using NSO Kitt Peak synoptic magnetograms. In addition, we have used SoHO/MDI magnetograms to derive the polar fields during cycle 23. Both Kitt Peak and MDI data at high latitudes (78∘{^{\circ}}--90∘{^{\circ}}) in both solar hemispheres show a significant drop in the absolute value of polar fields from the late declining phase of the solar cycle 22 to the maximum of the solar cycle 23. We find that long term changes in the absolute value of the polar field, in cycle 23, is well correlated with changes in meridional flow speeds that have been reported recently. We discuss the implication of this in influencing the extremely prolonged minimum experienced at the start of the current cycle 24 and in forecasting the behaviour of future solar cycles.Comment: 4 Figures 11 pages; Revised version under review in Solar Physic

    Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.

    Get PDF
    Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants

    Equilibration processes in the Warm-Hot Intergalactic Medium

    Full text link
    The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40-50 % to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.Comment: 13 pages, 4 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 8; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure
    • 

    corecore