516 research outputs found
A Metamodel for Crustal Magmatism: Phase Equilibria of Giant Ignimbrites
Diverse explanations exist for the large-volume catastrophic eruptions that formed the Bishop Tuff of Long Valley in eastern California, the Bandelier Tuff in New Mexico, and the tuffs of Yellowstone, Montana, USA. These eruptions are among the largest on Earth within the last 2 Myr. A common factor in recently proposed petrogenetic scenarios for each system is multistage processing, in which a crystal mush forms by crystal fractionation and is then remobilized to liberate high-silica liquids. Magma evolves in the lower crust in earlier phases. We have tested these scenarios quantitatively by performing phase equilibria calculations (MELTS) and comparing the results with observed liquid (glass) and phenocryst compositions. Although comparison of tuff samples from each ignimbrite reveals distinct phenocryst compositions and proportions, the computed results exhibit a remarkable degree of congruity among the systems, pointing to some underlying uniform behavior relevant to large-volume silicic ignimbrites. Computed liquid compositions derived from more than ∼25% fractional crystallization of the parental melt in the deep crust are marked by SiO2 concentrations several weight per cent too low compared with the observed compositions, suggesting a limit on the extent of magma evolution by crystal fractionation in the deep crust. In all cases, the phase equilibria results and related considerations point to evolution dominated by crystal fractionation of a water-saturated mafic parental melt at shallow depths (∼5 km). Parental melt compositions are consistent with those of observed regional primitive basalts erupted prior to ignimbrite eruption for each system in each region. Fractional crystallization of water-rich mafic melt at shallow levels leads inherently to destabilization near thermodynamic pseudoinvariant points at around 800°C within the melting interval close to, but above, the solidus. For each system, the magmas evolve to states of high exsolved H2O volume fraction even at 5 km depth, eventually exceeding the criterion for magma fragmentation of ∼60 vol. % near the pseudoinvariant point temperature. Copious exsolution and possible expulsion of fluid occurs at this temperature, where the solid fraction in the magma changes almost discontinuously (isothermally) to significantly higher values. This instability mechanism acts as an eruption trigger by generating a gravitationally unstable arrangement of low-density, water-saturated magma beneath a thin (several kilometres) crustal lid. The trigger mechanism is common to fractional crystallization scenarios based on a variety of conditions, when crystallized solids and/or exsolved fluids are fractionated from residual melt isobarically (constant pressure) or isochorically (constant volume). In a single system, differences in liquid compositions resulting from constant volume versus constant pressure crystallization and expulsion versus retention of exsolved H2O are small compared with those arising from variations in initial water concentration, lithostatic pressure, and oxygen fugacity. It is these latter quantities that lie at the crux of the commonality in large-volume ignimbrite-forming eruptions, with a reasonable range of metamodel parameters. Scale analysis provides thermal timescales for fractional crystallization, including age ranges for discrete crystal populations. For the Bishop Tuff, the overall timescale for the Bishop magma body is >1 Myr. For the Yellowstone Tuffs, calculated thermal timescales are consistent with recurrence intervals of ∼600 kyr between successive caldera collapses. Although it is recognized that petrogenetic processes other than perfect fractional crystallization play a role in ignimbrite petrogenesis, by emphasizing common features the uniqueness of each system can be brought into better focus by sound and quantitative analysi
Historical flash floods in England:new regional chronologies and database
There is increasing interest in past occurrences of flooding from intense rainfall, commonly referred to as “flash flooding,” and the associated socioeconomic consequences. Historical information can help us to place recent events in context and to understand the effect of low frequency climate variability on changing flash flood frequencies. Previous studies have focussed on fluvial flooding to reconstruct the temporal and spatial patterns of past events. Here, we provide an online flood chronology for the north and south‐west of England for flash floods, including both surface water and fluvial flooding, with coverage from ~1700 to ~2013 (http://ceg-fepsys.ncl.ac.uk/fc). The primary source of documentary material is local newspaper reports, which often give detailed descriptions of impacts. This provides a new resource to inform communities and first responders of flood risks, especially those from rapid rise in water level whose severity may be greater than those of accompanying peak flow. Examples are provided of historical flash floods that exemplify how the chronologies can help to place recent floods in the context of the preinstrumental record for: (a) more robust estimates of event return period, (b) identification of catchment or settlement susceptibility to flash flood events, and (c) characterisation of events in ungauged catchments
Mineral–water reactions in Earth's mantle: Predictions from Born theory and ab initio molecular dynamics
Recent studies present compelling evidence that a free aqueous fluid phase exists within the upper mantle. Fluid may be present at depths as great as the transition zone (410–660 km) and possibly beyond. The chemical reactivity of such deep fluids can be predicted from the Born model of solvation. To use the Born model, we need to know the dielectric constant of water under mantle conditions. We have used ab initio molecular dynamics simulations to determine the dielectric constant of water up to a pressure of 30 GPa and a temperature of 3000 K. Increased temperature lowers the dielectric constant and decreases ion solvation, but pressure overcomes this effect. The resulting high dielectric constant suggests that aqueous mantle fluids are highly reactive for ion solvation and mineral dissolution. We tested this by using the Helgeson–Kirkham–Flowers equation of state to estimate free energies of several mineral-solution and ion solvation reactions under mantle conditions. The results support previous estimates of carbonate solubility in the mantle. We also find that mantle fluids may play a key role in transporting ore metals: we evaluated the solubility of chalcopyrite and the complexation of Cu and Fe by Cl under mantle conditions and find that metal complexation is as significant as in ore-forming fluids in the crust. At reasonable conditions of pH and fH2, chalcopyrite is highly soluble. We tentatively hypothesize that exsolved fluids from subducted slabs may extract and mobilize primary sulfides in the mantle, implying potentially deep sources for porphyry copper deposits
Triggers of Breathlessness in Inducible Laryngeal Obstruction and Asthma
BackgroundInducible laryngeal obstruction (ILO) is often misdiagnosed as, or may coexist with, asthma. Identifying differences in triggering factors may assist clinicians to differentiate between the two conditions, and could give mechanistic insights.ObjectiveTo identify and compare patient‐reported triggers in ILO and asthma.MethodsThis was a two‐part study. Initially we conducted a retrospective case note review of the triggers of ILO from endoscopically‐confirmed ILO patients to generate a Breathlessness Triggers Survey (BrTS). Triggers were categorised as: scents, environmental factors, temperature, emotions, mechanical factors and daily activities. Secondly, ILO and/or asthma patients completed the BrTS prospectively, rating the likelihood of each item triggering their symptoms using a five‐point Likert scale (strongly disagree to strongly agree). Chi‐square testing was performed to compare responses by cohort.ResultsData from 202 patients with ILO [73% female, mean (SD) age 53(16) years] were included in the case note review. For the prospective study, 38 patients with ILO‐only [63% females, age 57(16) years], 39 patients with asthma‐only [(56% female, age 53(13) years] and 12 patients with both ILO and asthma [83% female, mean age, 57 (14) years)] completed the BrTS. The triggers identified in the case note review were confirmed in the independent sample of patients with ILO and/or asthma and identified several difference in prevalence of the triggers between disease types. Mechanical factors [talking (
Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension.
Increased physical activity is recommended for the general population and to patients of many diseases because of its health benefits but can be contraindicated if it is thought a risk for serious cardiovascular events. One such condition is pulmonary artery hypertension (PAH). PAH and right ventricular failure was induced in rats by a single injection of monocrotaline (MCT). MCT rats with voluntary access to a running wheel ran on average 2km per day. The time for half the animals to develop heart failure signs (median survival time) was 28 days (exercise failure (EF) group), significantly longer than sedentary animals (sedentary failure (SF) group), 23 days). The contractility of single failing myocytes in response to increasing demand (stimulation frequency) was significantly impaired compared with both sedentary control (SC) and exercising control (EC) myocytes. However, myocytes from exercising MCT rats, tested at 23 days (EM group) showed responses intermediate to the control (SC, EC) and failing (SF, EF) groups. We conclude that voluntary exercise is beneficial to rats with heart failure induced by PAH and this is evidence to support the consideration of appropriate exercise regimes for potentially vulnerable groups
Equity-Oriented Conceptual Framework for K-12 STEM Literacy
We introduce a conceptual framework of K-12 STEM literacy that rightfully and intentionally positions each and every student, particularly minoritized groups, as belonging in STEM. In order to conceptualize the equity-based framework of STEM literacy, we conducted a systematic review of literature related to STEM literacy, which includes empirical studies that contribute to STEM literacy. The literature on the siloed literacies within STEM (i.e., science, technology, engineering, and mathematics literacy) also contributed to formulate the necessity of and what it means to develop STEM literacy. The Equity-Oriented STEM Literacy Framework illuminates the complexities of disrupting the status quo and rightfully transforming integrated STEM education in ways that provide equitable opportunities and access to all learners. The Equity-Oriented STEM Literacy Framework is a research-based, equity and access-focused framework that will guide research, inform practice, and provide a lens for the field that will ensure each and every student, especially minoritized students, develop, and are developing STEM literacy
- …