2,140 research outputs found

    Native Language Effects on Flight Training Performance

    Get PDF
    Several high-profile commercial aviation accidents in the past that were caused in part by inadequate English language proficiency confirmed the importance of clear and concise communication between air traffic controllers and pilots. Although the connection between English language proficiency and aviation safety has been well established, there has been very little research concerning the relationship between English language proficiency and flight training performance. Thousands of international students who are not native speakers of the English language come to the United States and Canada for ab initio flight training every year. While the ability to communicate with air traffic controllers is critical for the safety of flight, communication skills can also have a profound effect on flight training performance. International flight students not only must communicate with air traffic controllers, but they must also communicate with their flight instructors on the ground and in flight. In addition, they must also be able to read and understand textbooks, manuals, and check lists that are all written in the English language. This research is focused on the relationship between English language proficiency and performance in ab initio flight training programs

    Common Biases In Business Research

    Get PDF

    Adiposity and Fat Metabolism During Combined Fasting and Lactation in Elephant Seals

    Get PDF
    Animals that fast depend on mobilizing lipid stores to power metabolism. Northern elephant seals (Mirounga angustirostris) incorporate extended fasting into several life-history stages: development, molting, breeding and lactation. The physiological processes enabling fasting and lactation are important in the context of the ecology and life history of elephant seals. The rare combination of fasting and lactation depends on the efficient mobilization of lipid from adipose stores and its direction into milk production. The mother elephant seal must ration her finite body stores to power maintenance metabolism, as well as to produce large quantities of lipid and protein rich milk. Lipid from body stores must first be mobilized; the action of lipolytic enzymes and hormones stimulate the release of fatty acids into the bloodstream. Biochemical processes affect the release of specific fatty acids in a predictable manner, and the pattern of release from lipid stores is closely reflected in the fatty acid content of the milk lipid. The content of the milk may have substantial developmental, thermoregulatory and metabolic consequences for the pup. The lactation and developmental patterns found in elephant seals are similar in some respects to those of other mammals; however, even within the limited number of mammals that simultaneously fast and lactate, there are important differences in the mechanisms that regulate lipid mobilization and milk lipid content. Although ungulates and humans do not fast during lactation, there are interesting comparisons to these groups regarding lipid mobilization and milk lipid content patterns

    Robotic Technologies for Proton Exchange Membrane Fuel Cell Assembly

    Get PDF
    Proton exchange membrane fuel cell (PEMFC) stacks and their components are currently being manufactured using laboratory fabrication methods. While in recent years these methods have been scaled up in size, they do not incorporate high-volume manufacturing methods. In this context, manufacturing R&D is necessary to prepare advanced manufacturing and assembly technologies that are required for low-cost, high-volume fuel cell power plant production. U.S. Department of Energy (DOE) has identified high-priority manufacturing R&D needs for PEMFCs. Along with efforts to develop technologies for high-speed manufacturing of fuel cell components, DOE identified the need for demonstrating automated assembly processes for fuel cell stacks. The scope of this chapter is to review current manufacturing R&D efforts in the area of automated processes for assembling PEMFC stacks, to present the current state of development, successful demonstrations, related technological challenges and the technical solutions used to overcome them. An emphasis of this review is on the design of tools used for robotic grasping, handling and inserting fuel cell components in the stack and on the use of design for manufacture and assembly (DFMA) strategies that enable the automated assembly process

    A scalable, high-speed measurement-based quantum computer using trapped ions

    Full text link
    We describe a scalable, high-speed, and robust architecture for measurement-based quantum-computing with trapped ions. Measurement-based architectures offer a way to speed-up operation of a quantum computer significantly by parallelizing the slow entangling operations and transferring the speed requirement to fast measurement of qubits. We show that a 3D cluster state suitable for fault-tolerant measurement-based quantum computing can be implemented on a 2D array of ion traps. We propose the projective measurement of ions via multi-photon photoionization for nanosecond operation and discuss the viability of such a scheme for Ca ions.Comment: 4 pages, 3 figure

    Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks

    Get PDF
    Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters). Identifying the original orientation of fuel cell components and loading them in presenters for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by either the automated fabrication technologies for fuel cell components or by the robotic assembly processes. We present for the first time a robotic technology which enables the integration of automated fabrication processes for fuel cell components with a robotic assembly process of fuel cell stacks into a fully automated fuel cell manufacturing line. This task uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components, to reorient them all in the same position and stack them in presenters in preparation for a subsequent robotic assembly process. The process was demonstrated as part of a larger endeavor of bringing to readiness advanced manufacturing technologies for alternative energy systems, and responds the high priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research and development

    Intravenous Vitamin C Administered as Adjunctive Therapy for Recurrent Acute Respiratory Distress Syndrome

    Get PDF
    This case report summarizes the first use of intravenous vitamin C employed as an adjunctive interventional agent in the therapy of recurrent acute respiratory distress syndrome (ARDS). The two episodes of ARDS occurred in a young female patient with Cronkhite-Canada syndrome, a rare, sporadically occurring, noninherited disorder that is characterized by extensive gastrointestinal polyposis and malabsorption. Prior to the episodes of sepsis, the patient was receiving nutrition via chronic hyperalimentation administered through a long-standing central venous catheter. The patient became recurrently septic with Gram positive cocci which led to two instances of ARDS. This report describes the broad-based general critical care of a septic patient with acute respiratory failure that includes fluid resuscitation, broad-spectrum antibiotics, and vasopressor support. Intravenous vitamin C infused at 50 mg per kilogram body weight every 6 hours for 96 hours was incorporated as an adjunctive agent in the care of this patient. Vitamin C when used as a parenteral agent in high doses acts “pleiotropically” to attenuate proinflammatory mediator expression, to improve alveolar fluid clearance, and to act as an antioxidant

    Simple proof of equivalence between adiabatic quantum computation and the circuit model

    Get PDF
    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.Comment: 5 pages, 2 figures. v2: improved gap estimates and added some more detail

    Functional responses of cougars (Puma concolor) in a multiple prey-species system

    Get PDF
    The study of predator-prey interactions is commonly analyzed using functional responses to gain an understanding of predation patterns and the impact they have on prey populations. Despite this, little is known about predator-prey systems with multiple prey species in sites near the equator. Here we studied the functional response of cougars (Puma concolor) in Sierra Nanchititla Natural Reserve (Mexico), in relation to their main prey, armadillo (Dasypus novemcinctus), coati (Nasua narica) and white-tailed deer (Odocoileus virginianus). Between 2004 and 2010, cougar scats were collected along five transects to estimate the consumption of different prey species. A relative abundance index (RAI) was calculated for each prey species and cougar using 18 camera traps. We compared Holling type I, II and III functional response models to determine patterns in prey consumption based on the relative abundance and biomass of each prey species consumed. The three main prey species comprised 55% (armadillo), 17% (coati) and 8% (white-tailed deer) of the diet. Type I and II functional responses described consumption of the two most common prey species armadillos and coati similarly well, while a type I response best characterized consumption of white-tailed deer. A negative correlation between the proportions of armadillo versus coati and white-tailed deer biomass in cougar scats suggests switching to consume alternative prey, confirming high foraging plasticity of this carnivore. This work represents one of the few studies to compare functional responses across multiple prey species, combined with evidence for prey switching at low densities of preferred prey
    corecore