29 research outputs found

    Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated natural wetland

    Get PDF
    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century

    Tourmaline Reference Materials for the In Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions

    Get PDF
    Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory data that might be present in such datasets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates the presence of a chemical matrix effect on SIMS instrumental mass fractionation with regards to δ18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass either 128 or 256 splits have been produced of each material, assuring their availability for many years into the future

    Solid-state phase relationships in the calcia-titania-zirconia system at 1200°C

    No full text
    Phase relationships were investigated in the CaO-TiO2-ZrO2 system at 1200°C for compositions containing \u3c 50 mol% CaO using X-ray diffraction and electron probe microanalysis. The existence of two previously reported ternary phases, zirconolite (CaZrTi2O7) and calzirtite (Ca2Zr5Ti2O16), was confirmed. Each of these phases exhibited a significant range of homogeneity between TiO2 and ZrO2, while maintaining a nearly constant concentration of CaO. The ternary solubilities of the constituent binary phases were found to be small (typically \u3c 1 mol%), with the exceptions of the perovskites (CaTiO3 and CaZrO3). These latter phases displayed mutual solubilities of at least 22 mol% but exhibited significant variations in composition from grain to grain. Thermodynamic equilibrium was clearly not established in several samples, although most of the phase relationship information obtained was self-consistent

    Tourmaline-bearing quartz veins in the Baraboo quartzite, Wisconsin: Occurrence and significance of foitite and oxy-foitite

    No full text
    The alkali-deficient tourmaline, foitite [□(Fe2+2Al Al6Si6O18(BO3)3(OH 3(OH)], and associated hematite occur in quartz veins that cut the geon 17 Baraboo Quartzite in south-central Wisconsin. The bluish green prismatic crystals of tourmaline are chemically zoned from core to rim, with the cores being very aluminous, highly alkali-deficient and, in one sample, relatively magnesian. Electron-microprobe analyses demonstrate that the tourmaline has a prevailing alkali-deficient in the X site, which ranges from 49 to 87%, with a mean of 73%, making this the most alkali-deficient tourmaline reported to date. In one sample, high contents of Al (up to 7.7 Al apfu) and high cation-charge excess demonstrate the likely existence of a dominant oxy-foitite component [□ (Fe2+ Al2) Al6Si6O18(BO33(OH)3(OH)3(O)], which is the first recognition of such in a natural occurrence. The wide range of chemical zoning in the tourmaline is most consistent with substitutions represented by the □Al(NaR)-1. AlO[R(OH)]-1, FeAl-1 and MgFe-1 exchanges, where R symbolizes Fe + Mg. The alkali-deficient character of the Baraboo tourmaline largely reflects the alkali-depleted and chemically mature composition of the host Baraboo Quartzite, but core-to-rim compositional variation in the tourmaline records the evolving nature of the attendant hydrothermal fluid, from a Na-poor, relatively alkaline early stage to a more sodic, acidic later stage

    Planktonic foraminiferal oxygen isotopes of ODP Site 143-865 samples

    No full text
    Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the d18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high d18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust d18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the d18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 mm pits with an analytical reproducibility of ±0.34 per mil (2 standard deviations). In situ measurements of d18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original d18O is largely preserved in the basal areas of muricae, this new d18O record indicates Early Paleogene (~49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published d18O record and that SSTs reached at least ~33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments
    corecore