835 research outputs found

    The use of confocal microscopy in quantifying changes in membrane potential

    Get PDF
    Monitoring the plasma membrane potential and its changes can be a time consuming and challenging task especially when conventional electrophysiological techniques are used. The use of potentiometricfluorophores, namely tetramethylrhodamine methylester (TMRM), and digital imaging devices (laser scanning confocal microscopy) provides reliable and time efficient method. Two scorpion pore-forming peptides, namely PP and OP1, were used as a tool to induce depolarization of the plasma membrane potential of neuroblastoma cell line and cardiac myocytes. Alternative methods for the neuroblastoma cells and cardiac myocytes were used. Depolarization of the neuroblastoma cells was calibrated with 140 mM KCl solution with 1 ìM valinomycin, after which intensity readers were substituted in the Nernst equation for quantification. Calibration of the alternative method used of the cardiac myocytes’ plasma membrane potential changes was calibrated with the use of 5, 20, 40, and 80 mM KCl solutions with 1 ìM valinomycin. A calibration curve was then constructed from which plasma membrane potential could be calculate

    The efficacy of a generic doxycycline tablet in the treatment of canine monocytic ehrlichiosis

    Get PDF
    The objective of the present study was to evaluate the therapeutic efficacy of a generic doxycycline tablet (DoxyVet®) against Ehrlichia canis infection in dogs. Canine monocytic ehrlichiosis is caused by the bacterium E. canis and transmitted by the brown kennel tick (Rhipicephalus sanguineus). Six disease-free and tick-free dogs were infested with E. canisinfected ticks. Once diagnosed (with polymerase chain reaction [PCR] analysis and platelet counts) as positive for infection, doxycycline tablets were administered orally once a day for 20 consecutive days, at a target dose level of 10 mg/kg. The actual dose administered was calculated as ranging between 10 mg/kg and 11.7 mg/kg. The PCR analysis, 28 days after the first administration of the tablets, failed to detect E. canis in any of the dogs. On Day 56 of the study, four of the dogs were diagnosed with E. canis for the second time and a fifth dog was diagnosed on Day 70. The platelet counts of the sixth dog remained within normal levels and it was discharged from the study on Day 84. Doxycycline tablets were then administered to the remaining five infected dogs for 28 consecutive days. Four of these dogs had no positive PCR results during the following 3 months. The fifth dog was diagnosed with E. canis for the third time 58 days after the last tablets of the second treatment had been administered, after which it was rescue treated (doxycycline for a further 28 days). The results indicate that doxycycline administered in tablet form (DoxyVet®) at 10 mg/kg – 11.7 mg/kg body mass once daily for 28 consecutive days clears most dogs of infection. The importance of a concomitant tick-control programme is therefore stressed

    A decision-making framework for restoring riparian zones degraded by invasive alien plants in South Africa

    Get PDF
    Riparian habitats in many parts of South Africa are severely degraded by invasive alien plants, especially trees. These invasions reduce water yields from catchments and affect riverine functioning and biodiversity. Initiatives are under way countrywide to clear alien plants from watercourses and surrounding catchments. Current understanding of key processes that regulate riparian functioning and define options for restoration is rudimentary. We review the impacts of riparian invasions and identify factors limiting the recovery of natural vegetation following alien clearance. We propose a framework of strategic interventions for optimizing restoration success. The framework identifies abiotic and biotic barriers to restoration at the scales of catchments and local reaches. In highly transformed catchments, interventions at the reach scale may fail if important barriers at the catchment scale are not addressed. The extent to which propagule supply and microsite conditions inhibit vegetation recovery is unknown. We also know little of the relative importance of dispersing vegetative propagules, dispersing seeds and soil-stored seed banks in vegetation dynamics, particularly after severe disturbances such as dense invasion by alien plants. The importance of geomorphological and hydrological factors in mediating recovery of riparian vegetation has not been adequately explored for all climatic areas in South Africa. More research is needed to determine the influence of different alien species and clearing treatments on the recovery of riparian vegetation. The literature strongly suggests that in highly alien-transformed catchments, the re-introduction of riparian species is required to promote recovery and suppress re-invasion. However, such interventions are unlikely to be widely implemented unless the cost: benefit ratios are favourable

    A decision-making framework for restoring riparian zones degraded by invasive alien plants in South Africa

    Get PDF
    Riparian habitats in many parts of South Africa are severely degraded by invasive alien plants, especially trees. These invasions reduce water yields from catchments and affect riverine functioning and biodiversity. Initiatives are under way countrywide to clear alien plants from watercourses and surrounding catchments. Current understanding of key processes that regulate riparian functioning and define options for restoration is rudimentary. We review the impacts of riparian invasions and identify factors limiting the recovery of natural vegetation following alien clearance. We propose a framework of strategic interventions for optimizing restoration success. The framework identifies abiotic and biotic barriers to restoration at the scales of catchments and local reaches. In highly transformed catchments, interventions at the reach scale may fail if important barriers at the catchment scale are not addressed. The extent to which propagule supply and microsite conditions inhibit vegetation recovery is unknown. We also know little of the relative importance of dispersing vegetative propagules, dispersing seeds and soil-stored seed banks in vegetation dynamics, particularly after severe disturbances such as dense invasion by alien plants. The importance of geomorphological and hydrological factors in mediating recovery of riparian vegetation has not been adequately explored for all climatic areas in South Africa. More research is needed to determine the influence of different alien species and clearing treatments on the recovery of riparian vegetation. The literature strongly suggests that in highly alien-transformed catchments, the re-introduction of riparian species is required to promote recovery and suppress re-invasion. However, such interventions are unlikely to be widely implemented unless the cost: benefit ratios are favourable

    Evaluation of a Water Channel-Based Platform for Characterizing Aerostat Flight Dynamics: A Case Study on a Lighter-Than-Air Wind Energy System

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140442/1/6.2014-2711.pd

    Urine patch detection using LiDAR and RPAS/UAV produced photogrammetry

    Get PDF
    In grazed dairy pastures, the largest N source for both nitrate (NO3-) leaching and nitrous oxide (N2O) emissions is urine-N excreted by the animals. Additional application of N on urine patches as fertilizer may increase these losses so adapting N-fertilisation in these areas is necessary. The objective of this study was to examine the use of a tractor mounted LiDAR (Light Detection and Ranging) system to accurately identify and quantify areas affect by excess N, such as urine and dung. To do so, a controlled experiment was designed in a paddock with no recent exposure to animals or N fertilisation. Synthetic urine was randomly applied within two 20m x 20m blocks and weekly LiDAR scans were taken for 5 weeks. LiDAR based contour maps of the pasture canopy were shown to accurately detect the asymmetric urine patches as well as calculate a percent area of urine based high N as early as one week after a simulated grazing event. Further, weekly flights were taken with a remotely piloted aircraft system (RPAS/UAV) to have aerial footage of the trial. Resulting mosaic of RGB and NIR images were used to create photogrammetric based contour maps. Both approaches (LiDAR and photogrammetry) show no significant difference in the identification and sizing of urine patch cluster

    Molecular markers delimit cryptic species in Ceratocystis sensu stricto

    Get PDF
    Ceratocystis sensu stricto is a genus of closely related fungi that are mostly plant pathogens. Morphological variation between species in this genus is limited and species delineation is strongly reliant on phylogenetic inference. Primary support for many of the species is based on the ITS region which, on its own, can be used to delineate all species described in the genus. However, the recent discovery of two ITS types in a single isolate of Ceratocystis questions the use of this marker in taxonomic studies. The aim of this study was to consider the potential use of alternative gene regions to support the species boundaries in this genus. The phylogenetic value of the βT 1 and EF 1-α gene regions, generally used in combination with ITS, were re-evaluated and compared to five single copy protein coding genes (CAL, RPBII, MS204, FG1093 and Mcm7). As an alternative approach, genome-wide single nucleotide polymorphisms (SNPs) were identified and evaluated as diagnostic markers to distinguish between the species. Fifteen species residing in Ceratocystis were used in this study. None of the protein coding genes could be used to distinguish all species but a combination of the βT 1, MS204 and RPBII gene regions resolved 11 of the 15 described species. Unique SNP markers were identified for 13 of the species and these provided significant additional support for most of the established taxon boundaries. Other than ITS, none of the markers tested could distinguish between C. acaciivora and C. manginecans and these species are, therefore, reduced to synonymy with the name C. manginecans being retained. Results of this study also revealed the likely existence of additional species in Ceratocystis.Tree Protection Co-operative Programme (TPCP), the National Research Foundation (NRF) as well as the Genomics Research Institute (GRI) at the University of Pretoria. Also the Thuthuka Foundation (grant no 80670) .http://link.springer.comjournal/11557hb201

    Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes : a review

    Get PDF
    The original publication is available at http://www.sawislibrary.co.za/dbtw-wpd/textbase/sajev.htmPlant-parasitic nematodes are a problem in vineyards worldwide, with some species acting as vectors of grapevine soil-transmitted viruses. Global pressure on the use of soil-applied chemical nematicides has led to a search for new control options, or for alternative methods to suppress plant-parasitic nematodes as part of integrated pest management. This paper gives valuable background information on the use of cover crops with biofumigation properties for the suppression of plant-parasitic nematodes in vineyards.Winetech, Dried Fruit Technical Services and the National Research Foundation of South AfricaPublishers' Versio
    • …
    corecore